ChechkovEugene
commited on
Commit
·
847f8ab
1
Parent(s):
2fa26c4
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 250.17 +/- 23.41
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fceacd1c550>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fceacd1c5e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fceacd1c670>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fceacd1c700>", "_build": "<function ActorCriticPolicy._build at 0x7fceacd1c790>", "forward": "<function ActorCriticPolicy.forward at 0x7fceacd1c820>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fceacd1c8b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fceacd1c940>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fceacd1c9d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fceacd1ca60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fceacd1caf0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fceacd92de0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670844798581235126, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACaIEb6fR8O7Ir+BtcHvKrMJuRM9NJOYNAAAgD8AAIA/ZhpkPXvOp7qYeO863PiTNeedkLoNNAm6AACAPwAAgD+aQQa8rumfumi62rbpP66xpGqduagU/DUAAIA/AACAP9NWfj5oZoU/3mO/PoQdpr7NtJs+2jHzPQAAAAAAAAAATZGlvSnIXboz37O3txyksuCtkbhgstM2AACAPwAAgD9mY2k9FEiDumZA57VtehAynCRBuxKDGTUAAIA/AACAP5oZwrt7xrK6Nc1ttBxHjq8KIp05bgGWMwAAgD8AAIA/ZjIivSk0drroNXS72gNDOHUOErtaYgo6AACAPwAAgD+auvA8j4IeuhZp2TTT0E0wQ4CCO975H7QAAIA/AACAP2aoK7wppB663Ow5tTPU9C51VIa74iBMNAAAgD8AAIA/ZnqiOxZzsz8HAyU+1iwjvqKOhbuvj5+7AAAAAAAAAADNj0K94cyTuk4U/jM1PCivTe4TuXtiqbMAAIA/AACAP0C8/L1H+KU/8k0cv9PFib7RIuq9xpxtvgAAAAAAAAAAzYiDPCnseLqxsYi6bDdrtqNvATuSEdo1AACAPwAAgD9mvpU9SfS5PxWl1T7alqu9wLN3PD88Mj4AAAAAAAAAAA39jL32gEC6wODgOs1XsTU4L2+7yrkEugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIrrfNVIjbZ0CUhpRSlIwBbJRN6AOMAXSUR0CQRNQdjoZAdX2UKGgGaAloD0MIqdiY1xEsY0CUhpRSlGgVTegDaBZHQJBGJTQ3PzF1fZQoaAZoCWgPQwixpx3+Gh5hQJSGlFKUaBVN6ANoFkdAkFPtZV4oqnV9lChoBmgJaA9DCDC6vDlcaGJAlIaUUpRoFU3oA2gWR0CQVJVZLZi/dX2UKGgGaAloD0MICft2EpEzYkCUhpRSlGgVTegDaBZHQJBUtdTo+wF1fZQoaAZoCWgPQwgQWDm0SJJlQJSGlFKUaBVN6ANoFkdAkFzH3cpLEnV9lChoBmgJaA9DCM0d/S/XlWRAlIaUUpRoFU3oA2gWR0CQXoQUHpr2dX2UKGgGaAloD0MIrwj+t5KlY0CUhpRSlGgVTegDaBZHQJBg0vUSZjR1fZQoaAZoCWgPQwgwnGuYoV1gQJSGlFKUaBVN6ANoFkdAkGYikXUH6nV9lChoBmgJaA9DCDPcgM+PamJAlIaUUpRoFU3oA2gWR0CQaP2RJVbSdX2UKGgGaAloD0MI/RadLDXqZECUhpRSlGgVTegDaBZHQJBpu4Ds+mp1fZQoaAZoCWgPQwgouFhRgztgQJSGlFKUaBVN6ANoFkdAkGy3hCMP0HV9lChoBmgJaA9DCF95kJ6iimNAlIaUUpRoFU3oA2gWR0CQksJRO1v3dX2UKGgGaAloD0MIDw2LUdd2ZECUhpRSlGgVTegDaBZHQJCTWAoXsPd1fZQoaAZoCWgPQwi+MQQAxwVmQJSGlFKUaBVN6ANoFkdAkJU5DVpblnV9lChoBmgJaA9DCNsV+mCZrWJAlIaUUpRoFU3oA2gWR0CQlc2MbWEsdX2UKGgGaAloD0MI02weh8FMXkCUhpRSlGgVTegDaBZHQJCbdVLi++N1fZQoaAZoCWgPQwhgI0kQrm5jQJSGlFKUaBVN6ANoFkdAkJzWvB7/oHV9lChoBmgJaA9DCLWjOEeda2VAlIaUUpRoFU3oA2gWR0CQqpiXY150dX2UKGgGaAloD0MIIo51cRuHZECUhpRSlGgVTegDaBZHQJCrP8zhxYJ1fZQoaAZoCWgPQwhzvALRE6NhQJSGlFKUaBVN6ANoFkdAkKtfJV81GnV9lChoBmgJaA9DCIqT+x0KMmNAlIaUUpRoFU3oA2gWR0CQsoiNsFdLdX2UKGgGaAloD0MIZjIcz2e6ZUCUhpRSlGgVTegDaBZHQJCzzNTtLL91fZQoaAZoCWgPQwg33bJDfG1jQJSGlFKUaBVN6ANoFkdAkLWEZBLPEHV9lChoBmgJaA9DCAPRkzKpmGRAlIaUUpRoFU3oA2gWR0CQudFzdUKidX2UKGgGaAloD0MIOGVuvhEIYkCUhpRSlGgVTegDaBZHQJC8IOWjXWh1fZQoaAZoCWgPQwglsg+yrHpjQJSGlFKUaBVN6ANoFkdAkLy0Q5FPSHV9lChoBmgJaA9DCOOo3ESt8mtAlIaUUpRoFU2aAmgWR0CQviR+jM3ZdX2UKGgGaAloD0MIndUCe0xOZUCUhpRSlGgVTegDaBZHQJC/KtDD0lJ1fZQoaAZoCWgPQwidhT3tcINnQJSGlFKUaBVN6ANoFkdAkOG0oWpIc3V9lChoBmgJaA9DCLNdoQ+W/mBAlIaUUpRoFU3oA2gWR0CQ4kNvOyE+dX2UKGgGaAloD0MIniPyXUo6ZUCUhpRSlGgVTegDaBZHQJDj+PeYUnJ1fZQoaAZoCWgPQwgJbM7BMxJiQJSGlFKUaBVN6ANoFkdAkOoXlr/KhnV9lChoBmgJaA9DCIiDhCjfWGBAlIaUUpRoFU3oA2gWR0CQ63isGPgfdX2UKGgGaAloD0MIiGh0B7HUX0CUhpRSlGgVTegDaBZHQJD5iZNO/L11fZQoaAZoCWgPQwjueJPfIidgQJSGlFKUaBVN6ANoFkdAkPotT5wfhnV9lChoBmgJaA9DCLIOR1fpnWVAlIaUUpRoFU3oA2gWR0CQ+k003wTedX2UKGgGaAloD0MIJT/iVyxhY0CUhpRSlGgVTegDaBZHQJEBqe2/i5x1fZQoaAZoCWgPQwjv4ZLjzmBiQJSGlFKUaBVN6ANoFkdAkQMI6jnFHnV9lChoBmgJaA9DCBe5p6u7Y2NAlIaUUpRoFU3oA2gWR0CRBO0Z3s5XdX2UKGgGaAloD0MIpkV9krtpYUCUhpRSlGgVTegDaBZHQJEJb+3pfQd1fZQoaAZoCWgPQwg8vVKWIQZjQJSGlFKUaBVN6ANoFkdAkQvS1Vo6CHV9lChoBmgJaA9DCBa/KazUC2VAlIaUUpRoFU3oA2gWR0CRDHRradtmdX2UKGgGaAloD0MI/PuMC4cOYkCUhpRSlGgVTegDaBZHQJEOAwHqu8t1fZQoaAZoCWgPQwjwTGiSWINdQJSGlFKUaBVN6ANoFkdAkQ8ZIUahpXV9lChoBmgJaA9DCFbzHJHvZmVAlIaUUpRoFU3oA2gWR0CRMthtLteEdX2UKGgGaAloD0MIgQabOo+3XkCUhpRSlGgVTegDaBZHQJEzaw8nuzB1fZQoaAZoCWgPQwgB9zx/2qFgQJSGlFKUaBVN6ANoFkdAkTUjWK/EfnV9lChoBmgJaA9DCJPIPsgyy2tAlIaUUpRoFU3mAmgWR0CROY6CDmKZdX2UKGgGaAloD0MI78nDQi1JYECUhpRSlGgVTegDaBZHQJE7KG/N7jV1fZQoaAZoCWgPQwh6NUBpKOZiQJSGlFKUaBVN6ANoFkdAkTxy3XqZ+nV9lChoBmgJaA9DCHC1TlyOnmBAlIaUUpRoFU3oA2gWR0CRSsYwIt17dX2UKGgGaAloD0MIDDuMSf+YY0CUhpRSlGgVTegDaBZHQJFK5jwx33Z1fZQoaAZoCWgPQwhVh9wMt9VvQJSGlFKUaBVNQwNoFkdAkUsofW+XaHV9lChoBmgJaA9DCEfp0r+kCmFAlIaUUpRoFU3oA2gWR0CRUe7UG3WndX2UKGgGaAloD0MI8ItLVdp4XkCUhpRSlGgVTegDaBZHQJFTUqwyIpJ1fZQoaAZoCWgPQwgcti3KbG5lQJSGlFKUaBVN6ANoFkdAkVniWu5jIHV9lChoBmgJaA9DCNLj9zb9GmZAlIaUUpRoFU3oA2gWR0CRXJSy+pOvdX2UKGgGaAloD0MIsCDNWLQAYUCUhpRSlGgVTegDaBZHQJFdR9AooeB1fZQoaAZoCWgPQwg2PL1SluFjQJSGlFKUaBVN6ANoFkdAkV8L8zhxYXV9lChoBmgJaA9DCAA49uy582FAlIaUUpRoFU3oA2gWR0CRYCnH/95ydX2UKGgGaAloD0MILVxWYbP4Y0CUhpRSlGgVTegDaBZHQJGEVwrDqGF1fZQoaAZoCWgPQwgAOzdtRgFhQJSGlFKUaBVN6ANoFkdAkYTqbONYKnV9lChoBmgJaA9DCEcCDTZ1rGBAlIaUUpRoFU3oA2gWR0CRhpxNZeRgdX2UKGgGaAloD0MIWYgOgSN1b0CUhpRSlGgVTdoBaBZHQJGKdblijL11fZQoaAZoCWgPQwgJjPUNzDhjQJSGlFKUaBVN6ANoFkdAkYr6sU7CBXV9lChoBmgJaA9DCOscA7LXAGNAlIaUUpRoFU3oA2gWR0CRjHxgy/KydX2UKGgGaAloD0MIa5p3nCI8YUCUhpRSlGgVTegDaBZHQJGNu3Zwn6V1fZQoaAZoCWgPQwjuBPuv8xdvQJSGlFKUaBVNJQNoFkdAkZZriuMdcXV9lChoBmgJaA9DCEazsn3IjWRAlIaUUpRoFU3oA2gWR0CRmZvmHP/rdX2UKGgGaAloD0MI16GakiwGY0CUhpRSlGgVTegDaBZHQJGZuXNTtLN1fZQoaAZoCWgPQwi4WbxYmF9kQJSGlFKUaBVN6ANoFkdAkZnhfOUt7XV9lChoBmgJaA9DCDDZeLDFl2JAlIaUUpRoFU3oA2gWR0CRn5YJ3PiUdX2UKGgGaAloD0MIz4dnCTJ0bUCUhpRSlGgVTfgCaBZHQJGfuPvKEFp1fZQoaAZoCWgPQwhBZJEm3tFhQJSGlFKUaBVN6ANoFkdAkao86/7BPHV9lChoBmgJaA9DCI8X0uEhRV1AlIaUUpRoFU3oA2gWR0CRqvsvZh8ZdX2UKGgGaAloD0MIbLQc6CHqZECUhpRSlGgVTegDaBZHQJGs5gnc+JR1fZQoaAZoCWgPQwinXUwzXfdkQJSGlFKUaBVN6ANoFkdAkdhhqKxcFHV9lChoBmgJaA9DCHizBu8rbGNAlIaUUpRoFU3oA2gWR0CR2P72tdRjdX2UKGgGaAloD0MI5Lop5TWLZkCUhpRSlGgVTegDaBZHQJHauA6Mir11fZQoaAZoCWgPQwjltKfknMllQJSGlFKUaBVN6ANoFkdAkd5tv0h/zHV9lChoBmgJaA9DCGiSWFLuiVxAlIaUUpRoFU3oA2gWR0CR3uwVj7Q+dX2UKGgGaAloD0MIOgg6WtWpa0CUhpRSlGgVTbwBaBZHQJHfVhqj8DV1fZQoaAZoCWgPQwjjHHV03CRiQJSGlFKUaBVN6ANoFkdAkeBVHvttynV9lChoBmgJaA9DCJoK8Ui8jGZAlIaUUpRoFU3oA2gWR0CR4VsdT5wgdX2UKGgGaAloD0MINuUK73JqbECUhpRSlGgVTYcDaBZHQJHndnjABT51fZQoaAZoCWgPQwhtVRLZB0NmQJSGlFKUaBVN6ANoFkdAkekqT0QK8nV9lChoBmgJaA9DCP/omzQNqF9AlIaUUpRoFU3oA2gWR0CR7AEhq0tzdX2UKGgGaAloD0MI31LOF3v/a0CUhpRSlGgVTZECaBZHQJHrtoIv8Il1fZQoaAZoCWgPQwjfbd44qbpgQJSGlFKUaBVN6ANoFkdAkewc+u/1x3V9lChoBmgJaA9DCPRtwVLdtHBAlIaUUpRoFU2PAWgWR0CR7cHKwIMSdX2UKGgGaAloD0MIEfxvJbvbb0CUhpRSlGgVTdgBaBZHQJHwqqGUOd51fZQoaAZoCWgPQwgZV1wcld9eQJSGlFKUaBVN6ANoFkdAkfFmNm16V3V9lChoBmgJaA9DCIVefxIfW2VAlIaUUpRoFU3oA2gWR0CR8XuOS4e+dX2UKGgGaAloD0MISGx3D1C+cECUhpRSlGgVTXsBaBZHQJHzF67dzn11fZQoaAZoCWgPQwgttd5vNFplQJSGlFKUaBVN6ANoFkdAkfplZX+2mnV9lChoBmgJaA9DCBLBOLh08m9AlIaUUpRoFU1CAmgWR0CSD/VHnU2DdX2UKGgGaAloD0MI56p5jsgEckCUhpRSlGgVTX8CaBZHQJIRXpmmLtN1fZQoaAZoCWgPQwhpp+ZyA6lvQJSGlFKUaBVNzQNoFkdAkhGX5N47inV9lChoBmgJaA9DCMCuJk9ZM25AlIaUUpRoFU2PAmgWR0CSEraQ3gk1dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e985ace306c075f9aee9dee45af0865f99cbcfb9daa8548364a31f6fd4989de2
|
3 |
+
size 147218
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fceacd1c550>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fceacd1c5e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fceacd1c670>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fceacd1c700>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fceacd1c790>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fceacd1c820>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fceacd1c8b0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fceacd1c940>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fceacd1c9d0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fceacd1ca60>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fceacd1caf0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fceacd92de0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1670844798581235126,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACaIEb6fR8O7Ir+BtcHvKrMJuRM9NJOYNAAAgD8AAIA/ZhpkPXvOp7qYeO863PiTNeedkLoNNAm6AACAPwAAgD+aQQa8rumfumi62rbpP66xpGqduagU/DUAAIA/AACAP9NWfj5oZoU/3mO/PoQdpr7NtJs+2jHzPQAAAAAAAAAATZGlvSnIXboz37O3txyksuCtkbhgstM2AACAPwAAgD9mY2k9FEiDumZA57VtehAynCRBuxKDGTUAAIA/AACAP5oZwrt7xrK6Nc1ttBxHjq8KIp05bgGWMwAAgD8AAIA/ZjIivSk0drroNXS72gNDOHUOErtaYgo6AACAPwAAgD+auvA8j4IeuhZp2TTT0E0wQ4CCO975H7QAAIA/AACAP2aoK7wppB663Ow5tTPU9C51VIa74iBMNAAAgD8AAIA/ZnqiOxZzsz8HAyU+1iwjvqKOhbuvj5+7AAAAAAAAAADNj0K94cyTuk4U/jM1PCivTe4TuXtiqbMAAIA/AACAP0C8/L1H+KU/8k0cv9PFib7RIuq9xpxtvgAAAAAAAAAAzYiDPCnseLqxsYi6bDdrtqNvATuSEdo1AACAPwAAgD9mvpU9SfS5PxWl1T7alqu9wLN3PD88Mj4AAAAAAAAAAA39jL32gEC6wODgOs1XsTU4L2+7yrkEugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIrrfNVIjbZ0CUhpRSlIwBbJRN6AOMAXSUR0CQRNQdjoZAdX2UKGgGaAloD0MIqdiY1xEsY0CUhpRSlGgVTegDaBZHQJBGJTQ3PzF1fZQoaAZoCWgPQwixpx3+Gh5hQJSGlFKUaBVN6ANoFkdAkFPtZV4oqnV9lChoBmgJaA9DCDC6vDlcaGJAlIaUUpRoFU3oA2gWR0CQVJVZLZi/dX2UKGgGaAloD0MICft2EpEzYkCUhpRSlGgVTegDaBZHQJBUtdTo+wF1fZQoaAZoCWgPQwgQWDm0SJJlQJSGlFKUaBVN6ANoFkdAkFzH3cpLEnV9lChoBmgJaA9DCM0d/S/XlWRAlIaUUpRoFU3oA2gWR0CQXoQUHpr2dX2UKGgGaAloD0MIrwj+t5KlY0CUhpRSlGgVTegDaBZHQJBg0vUSZjR1fZQoaAZoCWgPQwgwnGuYoV1gQJSGlFKUaBVN6ANoFkdAkGYikXUH6nV9lChoBmgJaA9DCDPcgM+PamJAlIaUUpRoFU3oA2gWR0CQaP2RJVbSdX2UKGgGaAloD0MI/RadLDXqZECUhpRSlGgVTegDaBZHQJBpu4Ds+mp1fZQoaAZoCWgPQwgouFhRgztgQJSGlFKUaBVN6ANoFkdAkGy3hCMP0HV9lChoBmgJaA9DCF95kJ6iimNAlIaUUpRoFU3oA2gWR0CQksJRO1v3dX2UKGgGaAloD0MIDw2LUdd2ZECUhpRSlGgVTegDaBZHQJCTWAoXsPd1fZQoaAZoCWgPQwi+MQQAxwVmQJSGlFKUaBVN6ANoFkdAkJU5DVpblnV9lChoBmgJaA9DCNsV+mCZrWJAlIaUUpRoFU3oA2gWR0CQlc2MbWEsdX2UKGgGaAloD0MI02weh8FMXkCUhpRSlGgVTegDaBZHQJCbdVLi++N1fZQoaAZoCWgPQwhgI0kQrm5jQJSGlFKUaBVN6ANoFkdAkJzWvB7/oHV9lChoBmgJaA9DCLWjOEeda2VAlIaUUpRoFU3oA2gWR0CQqpiXY150dX2UKGgGaAloD0MIIo51cRuHZECUhpRSlGgVTegDaBZHQJCrP8zhxYJ1fZQoaAZoCWgPQwhzvALRE6NhQJSGlFKUaBVN6ANoFkdAkKtfJV81GnV9lChoBmgJaA9DCIqT+x0KMmNAlIaUUpRoFU3oA2gWR0CQsoiNsFdLdX2UKGgGaAloD0MIZjIcz2e6ZUCUhpRSlGgVTegDaBZHQJCzzNTtLL91fZQoaAZoCWgPQwg33bJDfG1jQJSGlFKUaBVN6ANoFkdAkLWEZBLPEHV9lChoBmgJaA9DCAPRkzKpmGRAlIaUUpRoFU3oA2gWR0CQudFzdUKidX2UKGgGaAloD0MIOGVuvhEIYkCUhpRSlGgVTegDaBZHQJC8IOWjXWh1fZQoaAZoCWgPQwglsg+yrHpjQJSGlFKUaBVN6ANoFkdAkLy0Q5FPSHV9lChoBmgJaA9DCOOo3ESt8mtAlIaUUpRoFU2aAmgWR0CQviR+jM3ZdX2UKGgGaAloD0MIndUCe0xOZUCUhpRSlGgVTegDaBZHQJC/KtDD0lJ1fZQoaAZoCWgPQwidhT3tcINnQJSGlFKUaBVN6ANoFkdAkOG0oWpIc3V9lChoBmgJaA9DCLNdoQ+W/mBAlIaUUpRoFU3oA2gWR0CQ4kNvOyE+dX2UKGgGaAloD0MIniPyXUo6ZUCUhpRSlGgVTegDaBZHQJDj+PeYUnJ1fZQoaAZoCWgPQwgJbM7BMxJiQJSGlFKUaBVN6ANoFkdAkOoXlr/KhnV9lChoBmgJaA9DCIiDhCjfWGBAlIaUUpRoFU3oA2gWR0CQ63isGPgfdX2UKGgGaAloD0MIiGh0B7HUX0CUhpRSlGgVTegDaBZHQJD5iZNO/L11fZQoaAZoCWgPQwjueJPfIidgQJSGlFKUaBVN6ANoFkdAkPotT5wfhnV9lChoBmgJaA9DCLIOR1fpnWVAlIaUUpRoFU3oA2gWR0CQ+k003wTedX2UKGgGaAloD0MIJT/iVyxhY0CUhpRSlGgVTegDaBZHQJEBqe2/i5x1fZQoaAZoCWgPQwjv4ZLjzmBiQJSGlFKUaBVN6ANoFkdAkQMI6jnFHnV9lChoBmgJaA9DCBe5p6u7Y2NAlIaUUpRoFU3oA2gWR0CRBO0Z3s5XdX2UKGgGaAloD0MIpkV9krtpYUCUhpRSlGgVTegDaBZHQJEJb+3pfQd1fZQoaAZoCWgPQwg8vVKWIQZjQJSGlFKUaBVN6ANoFkdAkQvS1Vo6CHV9lChoBmgJaA9DCBa/KazUC2VAlIaUUpRoFU3oA2gWR0CRDHRradtmdX2UKGgGaAloD0MI/PuMC4cOYkCUhpRSlGgVTegDaBZHQJEOAwHqu8t1fZQoaAZoCWgPQwjwTGiSWINdQJSGlFKUaBVN6ANoFkdAkQ8ZIUahpXV9lChoBmgJaA9DCFbzHJHvZmVAlIaUUpRoFU3oA2gWR0CRMthtLteEdX2UKGgGaAloD0MIgQabOo+3XkCUhpRSlGgVTegDaBZHQJEzaw8nuzB1fZQoaAZoCWgPQwgB9zx/2qFgQJSGlFKUaBVN6ANoFkdAkTUjWK/EfnV9lChoBmgJaA9DCJPIPsgyy2tAlIaUUpRoFU3mAmgWR0CROY6CDmKZdX2UKGgGaAloD0MI78nDQi1JYECUhpRSlGgVTegDaBZHQJE7KG/N7jV1fZQoaAZoCWgPQwh6NUBpKOZiQJSGlFKUaBVN6ANoFkdAkTxy3XqZ+nV9lChoBmgJaA9DCHC1TlyOnmBAlIaUUpRoFU3oA2gWR0CRSsYwIt17dX2UKGgGaAloD0MIDDuMSf+YY0CUhpRSlGgVTegDaBZHQJFK5jwx33Z1fZQoaAZoCWgPQwhVh9wMt9VvQJSGlFKUaBVNQwNoFkdAkUsofW+XaHV9lChoBmgJaA9DCEfp0r+kCmFAlIaUUpRoFU3oA2gWR0CRUe7UG3WndX2UKGgGaAloD0MI8ItLVdp4XkCUhpRSlGgVTegDaBZHQJFTUqwyIpJ1fZQoaAZoCWgPQwgcti3KbG5lQJSGlFKUaBVN6ANoFkdAkVniWu5jIHV9lChoBmgJaA9DCNLj9zb9GmZAlIaUUpRoFU3oA2gWR0CRXJSy+pOvdX2UKGgGaAloD0MIsCDNWLQAYUCUhpRSlGgVTegDaBZHQJFdR9AooeB1fZQoaAZoCWgPQwg2PL1SluFjQJSGlFKUaBVN6ANoFkdAkV8L8zhxYXV9lChoBmgJaA9DCAA49uy582FAlIaUUpRoFU3oA2gWR0CRYCnH/95ydX2UKGgGaAloD0MILVxWYbP4Y0CUhpRSlGgVTegDaBZHQJGEVwrDqGF1fZQoaAZoCWgPQwgAOzdtRgFhQJSGlFKUaBVN6ANoFkdAkYTqbONYKnV9lChoBmgJaA9DCEcCDTZ1rGBAlIaUUpRoFU3oA2gWR0CRhpxNZeRgdX2UKGgGaAloD0MIWYgOgSN1b0CUhpRSlGgVTdoBaBZHQJGKdblijL11fZQoaAZoCWgPQwgJjPUNzDhjQJSGlFKUaBVN6ANoFkdAkYr6sU7CBXV9lChoBmgJaA9DCOscA7LXAGNAlIaUUpRoFU3oA2gWR0CRjHxgy/KydX2UKGgGaAloD0MIa5p3nCI8YUCUhpRSlGgVTegDaBZHQJGNu3Zwn6V1fZQoaAZoCWgPQwjuBPuv8xdvQJSGlFKUaBVNJQNoFkdAkZZriuMdcXV9lChoBmgJaA9DCEazsn3IjWRAlIaUUpRoFU3oA2gWR0CRmZvmHP/rdX2UKGgGaAloD0MI16GakiwGY0CUhpRSlGgVTegDaBZHQJGZuXNTtLN1fZQoaAZoCWgPQwi4WbxYmF9kQJSGlFKUaBVN6ANoFkdAkZnhfOUt7XV9lChoBmgJaA9DCDDZeLDFl2JAlIaUUpRoFU3oA2gWR0CRn5YJ3PiUdX2UKGgGaAloD0MIz4dnCTJ0bUCUhpRSlGgVTfgCaBZHQJGfuPvKEFp1fZQoaAZoCWgPQwhBZJEm3tFhQJSGlFKUaBVN6ANoFkdAkao86/7BPHV9lChoBmgJaA9DCI8X0uEhRV1AlIaUUpRoFU3oA2gWR0CRqvsvZh8ZdX2UKGgGaAloD0MIbLQc6CHqZECUhpRSlGgVTegDaBZHQJGs5gnc+JR1fZQoaAZoCWgPQwinXUwzXfdkQJSGlFKUaBVN6ANoFkdAkdhhqKxcFHV9lChoBmgJaA9DCHizBu8rbGNAlIaUUpRoFU3oA2gWR0CR2P72tdRjdX2UKGgGaAloD0MI5Lop5TWLZkCUhpRSlGgVTegDaBZHQJHauA6Mir11fZQoaAZoCWgPQwjltKfknMllQJSGlFKUaBVN6ANoFkdAkd5tv0h/zHV9lChoBmgJaA9DCGiSWFLuiVxAlIaUUpRoFU3oA2gWR0CR3uwVj7Q+dX2UKGgGaAloD0MIOgg6WtWpa0CUhpRSlGgVTbwBaBZHQJHfVhqj8DV1fZQoaAZoCWgPQwjjHHV03CRiQJSGlFKUaBVN6ANoFkdAkeBVHvttynV9lChoBmgJaA9DCJoK8Ui8jGZAlIaUUpRoFU3oA2gWR0CR4VsdT5wgdX2UKGgGaAloD0MINuUK73JqbECUhpRSlGgVTYcDaBZHQJHndnjABT51fZQoaAZoCWgPQwhtVRLZB0NmQJSGlFKUaBVN6ANoFkdAkekqT0QK8nV9lChoBmgJaA9DCP/omzQNqF9AlIaUUpRoFU3oA2gWR0CR7AEhq0tzdX2UKGgGaAloD0MI31LOF3v/a0CUhpRSlGgVTZECaBZHQJHrtoIv8Il1fZQoaAZoCWgPQwjfbd44qbpgQJSGlFKUaBVN6ANoFkdAkewc+u/1x3V9lChoBmgJaA9DCPRtwVLdtHBAlIaUUpRoFU2PAWgWR0CR7cHKwIMSdX2UKGgGaAloD0MIEfxvJbvbb0CUhpRSlGgVTdgBaBZHQJHwqqGUOd51fZQoaAZoCWgPQwgZV1wcld9eQJSGlFKUaBVN6ANoFkdAkfFmNm16V3V9lChoBmgJaA9DCIVefxIfW2VAlIaUUpRoFU3oA2gWR0CR8XuOS4e+dX2UKGgGaAloD0MISGx3D1C+cECUhpRSlGgVTXsBaBZHQJHzF67dzn11fZQoaAZoCWgPQwgttd5vNFplQJSGlFKUaBVN6ANoFkdAkfplZX+2mnV9lChoBmgJaA9DCBLBOLh08m9AlIaUUpRoFU1CAmgWR0CSD/VHnU2DdX2UKGgGaAloD0MI56p5jsgEckCUhpRSlGgVTX8CaBZHQJIRXpmmLtN1fZQoaAZoCWgPQwhpp+ZyA6lvQJSGlFKUaBVNzQNoFkdAkhGX5N47inV9lChoBmgJaA9DCMCuJk9ZM25AlIaUUpRoFU2PAmgWR0CSEraQ3gk1dWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 248,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9be982b50a59d6cc5fdcde252e4d437be105f9c4ea93a1590d3c91b6a6a16bc0
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:792f92e9fe0bad2f5ea6df632d2162f5d0e46e35f2176f7ea48d367817086e04
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (246 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 250.16868282587052, "std_reward": 23.414609983192555, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-12T12:24:33.519264"}
|