--- license: mit language: - en base_model: - 01-ai/Yi-1.5-9B-Chat - Qwen/Qwen2-7B-Instruct library_name: transformers tags: - mergekit - merge - conversational - chicka - chinese - china --- # ChinaLM by Chickaboo AI Welcome to ChinaLM, a Chinese LLM merge made Chickaboo AI. ChinaLM is designed to deliver a high-quality conversational experience in Chinese. ## Table of Contents - **Model Details** - **Benchmarks** - **Usage** ## Model Details ChinaLM is a merge of the [Qwen2-7B-Instruct](https://huggingface.co/Qwen/Qwen2-7B-Instruct) model and [Yi-1.5-9B-Chat](https://huggingface.co/01-ai/Yi-1.5-9B-Chat) made with Mergekit using this config file: ``` json slices: - sources: - model: 01-ai/Yi-1.5-9B-Chat layer_range: [0, 20] - sources: - model: Qwen/Qwen2-7B-Instruct layer_range: [0, 20] merge_method: passthrough dtype: bfloat16 ``` ## Open Chinese LLM Leaderboard Coming soon | **Benchmark** | **ChinaLM-9B** | **ChinaLM-13B (Unrealesed)** | **Mistral-7B-Instruct-v0.2** | **Meta-Llama-3-8B** | **Yi-1.5-9B-Chat** | **Qwen2-7B-Instruct** | |------------------|-----------------|------------------|------------------------------|---------------------|------------|--------------| | **Average** | **--** | -- | -- | -- | -- | -- | | **ARC** | **--** | -- | -- | -- | -- | -- | | **Hellaswag** | **--** | -- | -- | -- | -- | -- | | **MMLU** | **--** | -- | -- | -- | -- | -- | | **TruthfulQA** | **--** | -- | -- | -- | -- | -- | | **Winogrande** | **--** | -- |-- | -- | -- | -- | | **GSM8K** | **--** | -- | -- | -- | -- | -- | ## Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained("Chickaboo/ChinaLM-9B") tokenizer = AutoTokenizer.from_pretrained("Chickaboo/ChinaLM-9B") messages = [ {"role": "user", "content": "What is your favourite condiment?"}, {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"}, {"role": "user", "content": "Do you have mayonnaise recipes?"} ] encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt") model_inputs = encodeds.to(device) model.to(device) generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True) decoded = tokenizer.batch_decode(generated_ids) print(decoded[0])