File size: 6,874 Bytes
5f082be bab98fc 5f082be bab98fc 5f082be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
---
license: apache-2.0
language:
- en
---
# VeCLIP: Improving CLIP Training via Visual-enriched Captions
* A novel CLIP training scheme that achieves the SoTA performance on zero-shot ImageNet classification and COCO image text retreival using limited visual-enriched captions.* [[Paper](https://arxiv.org/abs/2310.07699)]
[Zhengfeng Lai*](https://zjujefflai.github.io/), [Haotian Zhang*](https://haotian-zhang.github.io/) , [Bowen Zhang](https://zbwglory.github.io/), Wentao Wu, Haoping Bai, Aleksei Timofeev, Xianzhi Du, [Zhe Gan](https://zhegan27.github.io/), Jiulong Shan, [Chen-Nee Chuah](https://www.ece.ucdavis.edu/~chuah/rubinet/people/chuah/bio.html), Yinfei Yang, Meng Cao [*: equal contribution]
<p align="center">
<img src="veclip_diagram.jpg" width="100%"></a> <br>
Diagram of VeCap.
</p>
## Release
- [03/06/2024] 🔥 We released the VeCLIP & VeCap-DFN [checkpoints](#checkpoints).
## Contents
- [Install](#install)
- [Getting Started](#getting-started)
- [Checkpoints](#checkpoints)
## Install
1. Clone this repository
```Shell
git clone https://github.com/apple/ml-veclip
cd ml-veclip
```
2. Create an environment and install related packages
```Shell
conda create -n veclip python=3.9 -y
conda activate veclip
pip install -r requirements.txt
```
## Getting Started
See the [example notebook](https://github.com/apple/ml-veclip/blob/main/load_veclip.ipynb) for details on how to simply load the different checkpoints using HuggingFace transformers.
## Checkpoints
We release the checkpoints for **VeCLIP**, which are trained from scratch on visual-enriched captions VeCap 3M/12M/100M/200M, as reported in the paper. The models are evaluated on COCO/Flickr30k image-text retrieval and ImageNet/ImageNetv2 classification in a zero-shot fashion. Use `wget` or `curl` to download the below checkpoints.
<table>
<thead>
<tr>
<th rowspan="2">Data</th>
<th rowspan="2">Model</th>
<th rowspan="2">Resolution</th>
<th colspan="2">COCO (R@1)</th>
<th colspan="2">Flickr30k (R@1)</th>
<th rowspan="2">ImageNet</th>
<th rowspan="2">ImageNetv2</th>
</tr>
<tr>
<th>I2T</th>
<th>T2I</th>
<th>I2T</th>
<th>T2I</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="2">VeCap 3M</td>
<td>CLIP-B/16</td>
<td>224x224</td>
<td>5.46</td>
<td>3.28</td>
<td>12.20</td>
<td>6.36</td>
<td>5.46</td>
<td>7.09</td>
</tr>
<tr>
<td><a href="https://docs-assets.developer.apple.com/ml-research/models/veclip/veclip_b16_3m.zip">VeCLIP-B/16</a></td>
<td>224x224</td>
<td>22.30</td>
<td>13.01</td>
<td>40.60</td>
<td>27.58</td>
<td>15.98</td>
<td>13.51</td>
</tr>
<tr>
<td rowspan="2">VeCap 12M</td>
<td>CLIP-B/16</td>
<td>224x224</td>
<td>24.52</td>
<td>14.28</td>
<td>44.70</td>
<td>290.6</td>
<td>31.60</td>
<td>27.03</td>
</tr>
<tr>
<td><a href="https://docs-assets.developer.apple.com/ml-research/models/veclip/veclip_b16_12m.zip">VeCLIP-B/16</a></td>
<td>224x224</td>
<td>47.78</td>
<td>31.62</td>
<td>73.90</td>
<td>55.68</td>
<td>38.11</td>
<td>32.53</td>
</tr>
<tr>
<td rowspan="2">VeCap 100M</td>
<td>CLIP-B/16</td>
<td>224x224</td>
<td>47.24</td>
<td>30.61</td>
<td>74.40</td>
<td>57.16</td>
<td>58.64</td>
<td>50.96</td>
</tr>
<tr>
<td><a href="https://docs-assets.developer.apple.com/ml-research/models/veclip/veclip_b16_100m.zip">VeCLIP-B/16</a></td>
<td>224x224</td>
<td>64.82</td>
<td>46.12</td>
<td>89.30</td>
<td>73.10</td>
<td>60.77</td>
<td>54.17</td>
</tr>
<tr>
<td rowspan="2">VeCap 200M</td>
<td>CLIP-B/16</td>
<td>224x224</td>
<td>52.20</td>
<td>34.97</td>
<td>80.90</td>
<td>63.26</td>
<td>63.72</td>
<td>56.84</td>
</tr>
<tr>
<td><a href="https://docs-assets.developer.apple.com/ml-research/models/veclip/veclip_b16_200m.zip">VeCLIP-B/16</a></td>
<td>224x224</td>
<td>67.20</td>
<td>48.40</td>
<td>91.10</td>
<td>76.32</td>
<td>64.64</td>
<td>57.67</td>
</tr>
</tbody>
</table>
We further found our VeCap can also be complementary to other well-established filtering methods, e.g., [Data Filtering Network (DFN)](ttps://arxiv.org/abs/2309.17425). We also provide thosse checkpoints (referred to as **VeCap-DFN**) and report their performance below.
<table>
<thead>
<tr>
<th rowspan="2">Backbone</th>
<th rowspan="2">Resolution</th>
<th rowspan="2">Data</th>
<th colspan="2">COCO (R@1)</th>
<th colspan="2">Flickr30k (R@1)</th>
<th rowspan="2">ImageNet</th>
<th rowspan="2">ImageNetV2</th>
</tr>
<tr>
<th>I2T</th>
<th>T2I</th>
<th>I2T</th>
<th>T2I</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="3"><a href="https://docs-assets.developer.apple.com/ml-research/models/veclip/vecapdfn_clip_b16.zip">VeCap-DFN-B/16</a></td>
<td rowspan="3">224x224</td>
<td>DFN </td>
<td>62.96</td>
<td>43.20</td>
<td>87.10</td>
<td>70.44</td>
<td>76.15</td>
<td>68.19</td>
</tr>
<tr>
<td>VeCap 300M</td>
<td>64.74</td>
<td>44.58</td>
<td>90.10</td>
<td>73.14</td>
<td>46.43</td>
<td>41.15</td>
</tr>
<tr>
<td>DFN + VeCap 300M</td>
<td>66.28</td>
<td>45.12</td>
<td>88.80</td>
<td>73.56</td>
<td>76.19</td>
<td>69.58</td>
</tr>
<tr>
<td rowspan="1"><a href="https://docs-assets.developer.apple.com/ml-research/models/veclip/vecapdfn_clip_l14.zip">VeCap-DFN-L/14</a></td>
<td rowspan="1">224x224</td>
<td>DFN + VeCap 300M</td>
<td>71.06</td>
<td>51.13</td>
<td>93.10</td>
<td>80.96</td>
<td>81.95</td>
<td>75.48</td>
</tr>
<tr>
<td rowspan="2"><a href="https://docs-assets.developer.apple.com/ml-research/models/veclip/vecapdfn_clip_h14_336.zip">VeCap-DFN-H/14</a></td>
<td rowspan="1">336x336</td>
<td>DFN + VeCap 300M</td>
<td>72.78</td>
<td>52.33</td>
<td>93.60</td>
<td>82.64</td>
<td>83.07</td>
<td>76.37</td>
</tr>
</tbody>
</table>
## Citation
If you find VeCLIP useful, please cite using this BibTeX:
```bibtex
@article{lai2023scarcity,
title={From scarcity to efficiency: Improving clip training via visual-enriched captions},
author={Lai, Zhengfeng and Zhang, Haotian and Zhang, Bowen and Wu, Wentao and Bai, Haoping and Timofeev, Aleksei and Du, Xianzhi and Gan, Zhe and Shan, Jiulong and Chuah, Chen-Nee and Yang, Yinfei and others},
journal={arXiv preprint arXiv:2310.07699},
year={2023}
}
@article{fang2023data,
title={Data filtering networks},
author={Fang, Alex and Jose, Albin Madappally and Jain, Amit and Schmidt, Ludwig and Toshev, Alexander and Shankar, Vaishaal},
journal={arXiv preprint arXiv:2309.17425},
year={2023}
}
```
## Acknowledgement
- [axlearn](https://github.com/apple/axlearn): the codebase we use to train the models.
- [huggingface transformers](https://huggingface.co/docs/transformers/en/index): Transformers provides APIs to load our trained models. |