Commit
·
3be53cf
1
Parent(s):
ac06c00
Update README.md
Browse files
README.md
CHANGED
@@ -1,71 +1,73 @@
|
|
1 |
-
|
2 |
-
license: mit
|
3 |
-
tags:
|
4 |
-
- generated_from_trainer
|
5 |
-
metrics:
|
6 |
-
- accuracy
|
7 |
-
- precision
|
8 |
-
- recall
|
9 |
-
- f1
|
10 |
-
model-index:
|
11 |
-
- name: Climate-TwitterBERT-step1
|
12 |
-
results: []
|
13 |
-
---
|
14 |
|
15 |
-
|
16 |
-
should probably proofread and complete it, then remove this comment. -->
|
17 |
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
This model is a fine-tuned version of [Climate-TwitterBERT/ctbert_corporate_mlm](https://huggingface.co/Climate-TwitterBERT/ctbert_corporate_mlm) on an unknown dataset.
|
21 |
-
It achieves the following results on the evaluation set:
|
22 |
-
- Loss: 0.0693
|
23 |
-
- Accuracy: 0.9767
|
24 |
-
- Precision: 0.8882
|
25 |
-
- Recall: 0.9346
|
26 |
-
- F1-weighted: 0.9769
|
27 |
-
- F1: 0.9108
|
28 |
|
29 |
-
## Model description
|
30 |
|
31 |
-
More information needed
|
32 |
|
33 |
-
## Intended uses & limitations
|
34 |
|
35 |
-
More information needed
|
36 |
|
37 |
-
## Training and evaluation data
|
38 |
|
39 |
-
More information needed
|
40 |
|
41 |
-
## Training procedure
|
42 |
|
43 |
-
### Training hyperparameters
|
44 |
|
45 |
-
The following hyperparameters were used during training:
|
46 |
-
- learning_rate: 1e-05
|
47 |
-
- train_batch_size: 128
|
48 |
-
- eval_batch_size: 2
|
49 |
-
- seed: 42
|
50 |
-
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
-
- lr_scheduler_type: linear
|
52 |
-
- lr_scheduler_warmup_ratio: 0.05
|
53 |
-
- num_epochs: 4
|
54 |
|
55 |
-
### Training results
|
56 |
|
57 |
-
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1-weighted | F1 |
|
58 |
-
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:-----------:|:------:|
|
59 |
-
| 0.2835 | 0.76 | 50 | 0.0636 | 0.9767 | 0.9252 | 0.8889 | 0.9765 | 0.9067 |
|
60 |
-
| 0.0821 | 1.52 | 100 | 0.0632 | 0.9775 | 0.8841 | 0.9477 | 0.9778 | 0.9148 |
|
61 |
-
| 0.0763 | 2.27 | 150 | 0.0627 | 0.9767 | 0.8882 | 0.9346 | 0.9769 | 0.9108 |
|
62 |
-
| 0.0561 | 3.03 | 200 | 0.0670 | 0.9742 | 0.8720 | 0.9346 | 0.9745 | 0.9022 |
|
63 |
-
| 0.0429 | 3.79 | 250 | 0.0693 | 0.9767 | 0.8882 | 0.9346 | 0.9769 | 0.9108 |
|
64 |
|
65 |
|
66 |
-
### Framework versions
|
67 |
|
68 |
-
- Transformers 4.28.1
|
69 |
-
- Pytorch 2.0.1+cu118
|
70 |
-
- Datasets 2.14.1
|
71 |
-
- Tokenizers 0.13.3
|
|
|
1 |
+
# Model Card Climate-TwitterBERT-step-1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
## Overview:
|
|
|
4 |
|
5 |
+
Using Covid-Twitter-BERT-v2 (https://huggingface.co/digitalepidemiologylab/covid-twitter-bert-v2) as the starting model, we continued domain-adaptive pre-training on a corpus of firm tweets between 2007 and 2020. The model was then fine-tuned on the downstream task to classify whether a given tweet is related to climate change topics.
|
6 |
+
|
7 |
+
The model provides a label and probability score, indicating whether a given tweet is related to climate change topics (label = 1) or not (label = 0).
|
8 |
+
|
9 |
+
## Performance metrics:
|
10 |
+
|
11 |
+
Based on the test set, the model achieves the following results:
|
12 |
+
|
13 |
+
• Loss: 0.0632
|
14 |
+
• F1-weighted: 0.9778
|
15 |
+
• F1: 0.9148
|
16 |
+
• Accuracy: 0.9775
|
17 |
+
• Precision: 0. 8841
|
18 |
+
• Recall: 0. 9477
|
19 |
+
|
20 |
+
## Example usage:
|
21 |
+
|
22 |
+
```python
|
23 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
24 |
+
|
25 |
+
task_name = 'binary'
|
26 |
+
model_name = Climate-TwitterBERT/ Climate-TwitterBERT-step1'
|
27 |
+
|
28 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
29 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
30 |
+
|
31 |
+
pipe = pipeline(task=‘binary‘, model=model, tokenizer=tokenizer)
|
32 |
+
|
33 |
+
tweet = "We are committed to significantly cutting our carbon emissions by 30% before 2030."
|
34 |
+
result = pipe(tweet)
|
35 |
+
# The 'result' variable will contain the classification output: 0 = non-climate tweet, 1= climate tweet
|
36 |
+
```
|
37 |
+
|
38 |
+
## Citation:
|
39 |
+
|
40 |
+
```bibtex
|
41 |
+
@article{fzz2023climatetwitter,
|
42 |
+
title={Responding to Climate Change crisis - firms' tradeoffs},
|
43 |
+
author={Fritsch, Felix and Zhang, Qi and Zheng, Xiang},
|
44 |
+
journal={Working paper},
|
45 |
+
year={2023},
|
46 |
+
institution={University of Mannheim, the Chinese University of Hong Kong, and NHH Norwegian School of Economics},
|
47 |
+
url={https://ssrn.com/XXXXXXX}
|
48 |
+
}
|
49 |
+
```
|
50 |
+
|
51 |
+
Fritsch, F., Zhang, Q., & Zheng, X. (2023). Responding to Climate Change crisis - firms' tradeoffs [Working paper]. University of Mannheim, the Chinese University of Hong Kong, and NHH Norwegian School of Economics.
|
52 |
+
|
53 |
+
|
54 |
+
## Framework versions
|
55 |
+
• Transformers 4.28.1
|
56 |
+
• Pytorch 2.0.1+cu118
|
57 |
+
• Datasets 2.14.1
|
58 |
+
• Tokenizers 0.13.3
|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
|
|
61 |
|
|
|
62 |
|
|
|
63 |
|
|
|
64 |
|
|
|
65 |
|
|
|
66 |
|
|
|
67 |
|
|
|
68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
|
|
70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
|
|
|
73 |
|
|
|
|
|
|
|
|