---
language: fr
license: mit
library_name: transformers
tags:
- audio
- audio-to-audio
- speech
datasets:
- Cnam-LMSSC/vibravox
---
# Model Card
- **Developed by:** [Cnam-LMSSC](https://huggingface.co/Cnam-LMSSC)
- **Model type:** [EBEN](https://github.com/jhauret/vibravox/blob/main/vibravox/torch_modules/dnn/eben_generator.py) (see [publication](https://ieeexplore.ieee.org/document/10244161))
- **Language:** French
- **License:** MIT
- **Finetuned dataset:** `speech_clean` subset of [Cnam-LMSSC/vibravox](https://huggingface.co/datasets/Cnam-LMSSC/vibravox)
- **Samplerate for usage:** 16kHz
## Overview
This bandwidth extension model is trained on one specific body conduction sensor data from the [Vibravox dataset](https://huggingface.co/datasets/Cnam-LMSSC/vibravox).
The model is designed to to enhance the audio quality of body-conducted captured speech, by denoising and regenerating mid and high frequencies from low frequency content only.
## Disclaimer
This model has been trained for **specific non-conventional speech sensors** and is intended to be used with **in-domain data**.
Please be advised that using these models outside their intended sensor data may result in suboptimal performance.
## Training procedure
Detailed instructions for reproducing the experiments are available on the [jhauret/vibravox](https://github.com/jhauret/vibravox) Github repository.
## Inference script :
```python
import torch, torchaudio
from vibravox import EBENGenerator
from datasets import load_dataset
model = EBENGenerator.from_pretrained("Cnam-LMSSC/EBEN_rigid_in_ear_microphone")
test_dataset = load_dataset("Cnam-LMSSC/vibravox", "speech_clean", split="test", streaming=True)
audio_48kHz = torch.Tensor(next(iter(test_dataset))["audio.rigid_in_ear_microphone"]["array"])
audio_16kHz = torchaudio.functional.resample(audio_48kHz, orig_freq=48_000, new_freq=16_000)
cut_audio_16kHz = model.cut_to_valid_length(audio_16kHz)
enhanced_audio_16kHz = model(cut_audio_16kHz)
```
## Link to other BWE models trained on other body conducted sensors :
An entry point to all **audio bandwidth extension** (BWE) models trained on different sensor data from the trained on different sensor data from the [Vibravox dataset](https://huggingface.co/datasets/Cnam-LMSSC/vibravox) is available at [https://huggingface.co/Cnam-LMSSC/vibravox_EBEN_bwe_models](https://huggingface.co/Cnam-LMSSC/vibravox_EBEN_bwe_models).