File size: 8,688 Bytes
2b1b8bd
fe17a18
08ef55a
2b1b8bd
 
08ef55a
 
2b1b8bd
 
 
 
 
 
 
 
 
 
08ef55a
2b1b8bd
a4b7169
 
 
 
 
 
2b1b8bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1acb648
 
2b1b8bd
 
 
08ef55a
 
 
 
 
 
a4b7169
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08ef55a
2b1b8bd
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
---
license: apache-2.0
base_model: google/t5-efficient-tiny
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: denoice-finetuned-xsum
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# denoice-finetuned-xsum

This model is a fine-tuned version of [google/t5-efficient-tiny](https://huggingface.co/google/t5-efficient-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0221
- Rouge1: 94.8315
- Rouge2: 72.6592
- Rougel: 94.8315
- Rougelsum: 94.8876
- Gen Len: 5.1348

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 500
- eval_batch_size: 500
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 70

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| No log        | 1.0   | 36   | 0.0285          | 91.8165 | 69.4757 | 91.8727 | 92.0412   | 5.0843  |
| No log        | 2.0   | 72   | 0.0284          | 91.6854 | 69.2884 | 91.7603 | 91.9476   | 5.0787  |
| No log        | 3.0   | 108  | 0.0280          | 92.3783 | 70.0375 | 92.4625 | 92.5281   | 5.0899  |
| No log        | 4.0   | 144  | 0.0277          | 92.3783 | 70.0375 | 92.4625 | 92.5281   | 5.0899  |
| No log        | 5.0   | 180  | 0.0276          | 92.9307 | 70.412  | 93.0337 | 93.1086   | 5.0955  |
| No log        | 6.0   | 216  | 0.0275          | 93.8764 | 71.5356 | 93.9607 | 94.0449   | 5.1236  |
| No log        | 7.0   | 252  | 0.0271          | 92.9963 | 70.412  | 92.9588 | 93.0337   | 5.1067  |
| No log        | 8.0   | 288  | 0.0268          | 93.3708 | 70.9738 | 93.427  | 93.3708   | 5.118   |
| No log        | 9.0   | 324  | 0.0267          | 93.3708 | 70.9738 | 93.427  | 93.3708   | 5.118   |
| No log        | 10.0  | 360  | 0.0264          | 93.3708 | 70.9738 | 93.427  | 93.3708   | 5.118   |
| No log        | 11.0  | 396  | 0.0264          | 93.5581 | 70.9738 | 93.5393 | 93.6517   | 5.1124  |
| No log        | 12.0  | 432  | 0.0262          | 93.5581 | 70.9738 | 93.5393 | 93.6517   | 5.1124  |
| No log        | 13.0  | 468  | 0.0260          | 93.5581 | 70.9738 | 93.5393 | 93.6517   | 5.1124  |
| 0.049         | 14.0  | 504  | 0.0259          | 93.4644 | 70.8801 | 93.4457 | 93.5768   | 5.1236  |
| 0.049         | 15.0  | 540  | 0.0257          | 93.5581 | 70.9738 | 93.5393 | 93.6517   | 5.1124  |
| 0.049         | 16.0  | 576  | 0.0256          | 93.4644 | 70.8801 | 93.4457 | 93.5768   | 5.1236  |
| 0.049         | 17.0  | 612  | 0.0256          | 93.5581 | 70.9738 | 93.5393 | 93.6517   | 5.1124  |
| 0.049         | 18.0  | 648  | 0.0255          | 93.4644 | 70.8801 | 93.4457 | 93.5768   | 5.118   |
| 0.049         | 19.0  | 684  | 0.0252          | 93.5581 | 70.9738 | 93.5393 | 93.6517   | 5.1067  |
| 0.049         | 20.0  | 720  | 0.0250          | 93.5581 | 70.9738 | 93.5393 | 93.6517   | 5.1124  |
| 0.049         | 21.0  | 756  | 0.0248          | 93.5581 | 70.9738 | 93.5393 | 93.6517   | 5.1124  |
| 0.049         | 22.0  | 792  | 0.0245          | 93.8764 | 71.5356 | 93.9607 | 94.0449   | 5.118   |
| 0.049         | 23.0  | 828  | 0.0246          | 93.8764 | 71.5356 | 93.9607 | 94.0449   | 5.118   |
| 0.049         | 24.0  | 864  | 0.0246          | 93.5581 | 70.9738 | 93.5393 | 93.6517   | 5.1067  |
| 0.049         | 25.0  | 900  | 0.0245          | 93.8764 | 71.5356 | 93.9607 | 94.0449   | 5.118   |
| 0.049         | 26.0  | 936  | 0.0243          | 94.1573 | 72.2846 | 94.2697 | 94.2697   | 5.1236  |
| 0.049         | 27.0  | 972  | 0.0243          | 93.8764 | 71.5356 | 93.9607 | 94.0449   | 5.118   |
| 0.0433        | 28.0  | 1008 | 0.0242          | 93.8764 | 71.5356 | 93.9607 | 94.0449   | 5.1236  |
| 0.0433        | 29.0  | 1044 | 0.0239          | 93.8764 | 71.5356 | 93.9607 | 94.0449   | 5.118   |
| 0.0433        | 30.0  | 1080 | 0.0237          | 93.8764 | 71.5356 | 93.9607 | 94.0449   | 5.118   |
| 0.0433        | 31.0  | 1116 | 0.0236          | 93.8764 | 71.5356 | 93.9607 | 94.0449   | 5.1236  |
| 0.0433        | 32.0  | 1152 | 0.0235          | 93.8764 | 71.5356 | 93.9607 | 94.0449   | 5.118   |
| 0.0433        | 33.0  | 1188 | 0.0234          | 93.8764 | 71.5356 | 93.9607 | 94.0449   | 5.118   |
| 0.0433        | 34.0  | 1224 | 0.0234          | 93.8764 | 71.5356 | 93.9607 | 94.0449   | 5.118   |
| 0.0433        | 35.0  | 1260 | 0.0232          | 93.8764 | 71.5356 | 93.9607 | 94.0449   | 5.118   |
| 0.0433        | 36.0  | 1296 | 0.0232          | 93.8764 | 71.5356 | 93.9607 | 94.0449   | 5.118   |
| 0.0433        | 37.0  | 1332 | 0.0232          | 93.8764 | 71.5356 | 93.9607 | 94.0449   | 5.118   |
| 0.0433        | 38.0  | 1368 | 0.0232          | 93.8764 | 71.5356 | 93.9607 | 94.0449   | 5.118   |
| 0.0433        | 39.0  | 1404 | 0.0230          | 93.8764 | 71.5356 | 93.9607 | 94.0449   | 5.1236  |
| 0.0433        | 40.0  | 1440 | 0.0228          | 93.8764 | 71.5356 | 93.9607 | 94.0449   | 5.1236  |
| 0.0433        | 41.0  | 1476 | 0.0228          | 94.4944 | 72.0974 | 94.4944 | 94.6067   | 5.1348  |
| 0.0399        | 42.0  | 1512 | 0.0228          | 94.4944 | 72.0974 | 94.4944 | 94.6067   | 5.1348  |
| 0.0399        | 43.0  | 1548 | 0.0228          | 94.4944 | 72.0974 | 94.4944 | 94.6067   | 5.1348  |
| 0.0399        | 44.0  | 1584 | 0.0228          | 94.4944 | 72.0974 | 94.4944 | 94.6067   | 5.1348  |
| 0.0399        | 45.0  | 1620 | 0.0228          | 94.4944 | 72.0974 | 94.4944 | 94.6067   | 5.1292  |
| 0.0399        | 46.0  | 1656 | 0.0228          | 94.4944 | 72.0974 | 94.4944 | 94.6067   | 5.1292  |
| 0.0399        | 47.0  | 1692 | 0.0228          | 94.4944 | 72.0974 | 94.4944 | 94.6067   | 5.1292  |
| 0.0399        | 48.0  | 1728 | 0.0227          | 94.8315 | 72.6592 | 94.8315 | 94.8876   | 5.1348  |
| 0.0399        | 49.0  | 1764 | 0.0226          | 94.8315 | 72.6592 | 94.8315 | 94.8876   | 5.1348  |
| 0.0399        | 50.0  | 1800 | 0.0225          | 94.8315 | 72.6592 | 94.8315 | 94.8876   | 5.1348  |
| 0.0399        | 51.0  | 1836 | 0.0224          | 94.8315 | 72.6592 | 94.8315 | 94.8876   | 5.1348  |
| 0.0399        | 52.0  | 1872 | 0.0225          | 94.8315 | 72.6592 | 94.8315 | 94.8876   | 5.1348  |
| 0.0399        | 53.0  | 1908 | 0.0224          | 94.8315 | 72.6592 | 94.8315 | 94.8876   | 5.1348  |
| 0.0399        | 54.0  | 1944 | 0.0224          | 94.8315 | 72.6592 | 94.8315 | 94.8876   | 5.1348  |
| 0.0399        | 55.0  | 1980 | 0.0224          | 94.8315 | 72.6592 | 94.8315 | 94.8876   | 5.1348  |
| 0.0379        | 56.0  | 2016 | 0.0223          | 94.8315 | 72.6592 | 94.8315 | 94.8876   | 5.1348  |
| 0.0379        | 57.0  | 2052 | 0.0222          | 94.8315 | 72.6592 | 94.8315 | 94.8876   | 5.1348  |
| 0.0379        | 58.0  | 2088 | 0.0222          | 94.8315 | 72.6592 | 94.8315 | 94.8876   | 5.1348  |
| 0.0379        | 59.0  | 2124 | 0.0222          | 94.8315 | 72.6592 | 94.8315 | 94.8876   | 5.1348  |
| 0.0379        | 60.0  | 2160 | 0.0221          | 94.8315 | 72.6592 | 94.8315 | 94.8876   | 5.1348  |
| 0.0379        | 61.0  | 2196 | 0.0221          | 94.4944 | 72.0974 | 94.4944 | 94.6067   | 5.1292  |
| 0.0379        | 62.0  | 2232 | 0.0221          | 94.8315 | 72.6592 | 94.8315 | 94.8876   | 5.1348  |
| 0.0379        | 63.0  | 2268 | 0.0221          | 94.8315 | 72.6592 | 94.8315 | 94.8876   | 5.1348  |
| 0.0379        | 64.0  | 2304 | 0.0221          | 94.8315 | 72.6592 | 94.8315 | 94.8876   | 5.1348  |
| 0.0379        | 65.0  | 2340 | 0.0221          | 94.8315 | 72.6592 | 94.8315 | 94.8876   | 5.1348  |
| 0.0379        | 66.0  | 2376 | 0.0221          | 94.8315 | 72.6592 | 94.8315 | 94.8876   | 5.1348  |
| 0.0379        | 67.0  | 2412 | 0.0221          | 94.8315 | 72.6592 | 94.8315 | 94.8876   | 5.1348  |
| 0.0379        | 68.0  | 2448 | 0.0221          | 94.8315 | 72.6592 | 94.8315 | 94.8876   | 5.1348  |
| 0.0379        | 69.0  | 2484 | 0.0221          | 94.8315 | 72.6592 | 94.8315 | 94.8876   | 5.1348  |
| 0.0369        | 70.0  | 2520 | 0.0221          | 94.8315 | 72.6592 | 94.8315 | 94.8876   | 5.1348  |


### Framework versions

- Transformers 4.36.2
- Pytorch 1.13.1
- Datasets 2.16.1
- Tokenizers 0.15.0