|
from diffusers import LDMPipeline |
|
import torch |
|
import PIL.Image |
|
import gradio as gr |
|
import random |
|
import numpy as np |
|
|
|
pipeline = LDMPipeline.from_pretrained("CompVis/ldm-celebahq-256") |
|
|
|
def predict(steps, seed): |
|
generator = torch.manual_seed(seed) |
|
for i in range(1,steps): |
|
yield pipeline(generator=generator, num_inference_steps=i)["sample"][0] |
|
|
|
random_seed = random.randint(0, 2147483647) |
|
gr.Interface( |
|
predict, |
|
inputs=[ |
|
gr.inputs.Slider(1, 100, label='Inference Steps', default=5, step=1), |
|
gr.inputs.Slider(0, 2147483647, label='Seed', default=random_seed, step=1), |
|
], |
|
outputs=gr.Image(shape=[256,256], type="pil", elem_id="output_image"), |
|
css="#output_image{width: 256px}", |
|
title="ldm-celebahq-256 - 🧨 diffusers library", |
|
description="This Spaces contains an unconditional Latent Diffusion process for the <a href=\"https://huggingface.co/CompVis/ldm-celebahq-256\">ldm-celebahq-256</a> face generator model by <a href=\"https://huggingface.co/CompVis\">CompVis</a> using the <a href=\"https://github.com/huggingface/diffusers\">diffusers library</a>. The goal of this demo is to showcase the diffusers library capabilities. If you want the state-of-the-art experience with Latent Diffusion text-to-image check out the <a href=\"https://huggingface.co/spaces/multimodalart/latentdiffusion\">main Spaces</a>.", |
|
).queue().launch() |