Conrad747 commited on
Commit
905c8ab
1 Parent(s): a2fe3fa

Training complete

Browse files
Files changed (2) hide show
  1. README.md +19 -19
  2. pytorch_model.bin +1 -1
README.md CHANGED
@@ -25,16 +25,16 @@ model-index:
25
  metrics:
26
  - name: Precision
27
  type: precision
28
- value: 0.7679892400806994
29
  - name: Recall
30
  type: recall
31
- value: 0.7669576897246474
32
  - name: F1
33
  type: f1
34
- value: 0.7674731182795699
35
  - name: Accuracy
36
  type: accuracy
37
- value: 0.9394874401045448
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
44
 
45
  This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the lg-ner dataset.
46
  It achieves the following results on the evaluation set:
47
- - Loss: 0.2845
48
- - Precision: 0.7680
49
- - Recall: 0.7670
50
- - F1: 0.7675
51
- - Accuracy: 0.9395
52
 
53
  ## Model description
54
 
@@ -79,16 +79,16 @@ The following hyperparameters were used during training:
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
- | No log | 1.0 | 261 | 0.6034 | 0.4624 | 0.2149 | 0.2934 | 0.8369 |
83
- | 0.6707 | 2.0 | 522 | 0.4082 | 0.7214 | 0.4453 | 0.5507 | 0.8948 |
84
- | 0.6707 | 3.0 | 783 | 0.3172 | 0.7413 | 0.6179 | 0.6740 | 0.9181 |
85
- | 0.295 | 4.0 | 1044 | 0.3241 | 0.7305 | 0.6810 | 0.7049 | 0.9124 |
86
- | 0.295 | 5.0 | 1305 | 0.2784 | 0.7241 | 0.7173 | 0.7206 | 0.9271 |
87
- | 0.1781 | 6.0 | 1566 | 0.2703 | 0.7643 | 0.7381 | 0.7509 | 0.9331 |
88
- | 0.1781 | 7.0 | 1827 | 0.2585 | 0.7865 | 0.7670 | 0.7766 | 0.9418 |
89
- | 0.1172 | 8.0 | 2088 | 0.2696 | 0.8109 | 0.7488 | 0.7786 | 0.9420 |
90
- | 0.1172 | 9.0 | 2349 | 0.2680 | 0.7792 | 0.7535 | 0.7661 | 0.9422 |
91
- | 0.0874 | 10.0 | 2610 | 0.2845 | 0.7680 | 0.7670 | 0.7675 | 0.9395 |
92
 
93
 
94
  ### Framework versions
 
25
  metrics:
26
  - name: Precision
27
  type: precision
28
+ value: 0.8029689608636977
29
  - name: Recall
30
  type: recall
31
+ value: 0.7991940899932841
32
  - name: F1
33
  type: f1
34
+ value: 0.8010770784247729
35
  - name: Accuracy
36
  type: accuracy
37
+ value: 0.9467474952809641
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
44
 
45
  This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the lg-ner dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 0.2811
48
+ - Precision: 0.8030
49
+ - Recall: 0.7992
50
+ - F1: 0.8011
51
+ - Accuracy: 0.9467
52
 
53
  ## Model description
54
 
 
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | No log | 1.0 | 261 | 0.5150 | 0.4947 | 0.2841 | 0.3609 | 0.8692 |
83
+ | 0.6193 | 2.0 | 522 | 0.3422 | 0.7491 | 0.5393 | 0.6271 | 0.9161 |
84
+ | 0.6193 | 3.0 | 783 | 0.2737 | 0.7744 | 0.6595 | 0.7124 | 0.9306 |
85
+ | 0.2505 | 4.0 | 1044 | 0.3201 | 0.7343 | 0.7072 | 0.7205 | 0.9141 |
86
+ | 0.2505 | 5.0 | 1305 | 0.2564 | 0.7887 | 0.7569 | 0.7724 | 0.9375 |
87
+ | 0.1474 | 6.0 | 1566 | 0.2461 | 0.8173 | 0.7569 | 0.7859 | 0.9459 |
88
+ | 0.1474 | 7.0 | 1827 | 0.2739 | 0.8004 | 0.7757 | 0.7879 | 0.9434 |
89
+ | 0.0956 | 8.0 | 2088 | 0.2566 | 0.8100 | 0.7905 | 0.8001 | 0.9486 |
90
+ | 0.0956 | 9.0 | 2349 | 0.2709 | 0.7859 | 0.7938 | 0.7898 | 0.9463 |
91
+ | 0.0712 | 10.0 | 2610 | 0.2811 | 0.8030 | 0.7992 | 0.8011 | 0.9467 |
92
 
93
 
94
  ### Framework versions
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e3df726ad8e18f4cf24e2f31c63b2a1ab8b77d9c7426fc76c9dd2797766bfa4f
3
  size 1109957862
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:871872c759af59957578813bff68362259283eb7c2173ae4b5b197845237e87a
3
  size 1109957862