Training complete
Browse files- README.md +19 -19
- pytorch_model.bin +1 -1
README.md
CHANGED
@@ -25,16 +25,16 @@ model-index:
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
-
value: 0.
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
-
value: 0.
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
-
value: 0.
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
-
value: 0.
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
44 |
|
45 |
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the lg-ner dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
-
- Loss: 0.
|
48 |
-
- Precision: 0.
|
49 |
-
- Recall: 0.
|
50 |
-
- F1: 0.
|
51 |
-
- Accuracy: 0.
|
52 |
|
53 |
## Model description
|
54 |
|
@@ -79,16 +79,16 @@ The following hyperparameters were used during training:
|
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
-
| No log | 1.0 | 261 | 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
|
93 |
|
94 |
### Framework versions
|
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
+
value: 0.8029689608636977
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
+
value: 0.7991940899932841
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
+
value: 0.8010770784247729
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
+
value: 0.9467474952809641
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
44 |
|
45 |
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the lg-ner dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.2811
|
48 |
+
- Precision: 0.8030
|
49 |
+
- Recall: 0.7992
|
50 |
+
- F1: 0.8011
|
51 |
+
- Accuracy: 0.9467
|
52 |
|
53 |
## Model description
|
54 |
|
|
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| No log | 1.0 | 261 | 0.5150 | 0.4947 | 0.2841 | 0.3609 | 0.8692 |
|
83 |
+
| 0.6193 | 2.0 | 522 | 0.3422 | 0.7491 | 0.5393 | 0.6271 | 0.9161 |
|
84 |
+
| 0.6193 | 3.0 | 783 | 0.2737 | 0.7744 | 0.6595 | 0.7124 | 0.9306 |
|
85 |
+
| 0.2505 | 4.0 | 1044 | 0.3201 | 0.7343 | 0.7072 | 0.7205 | 0.9141 |
|
86 |
+
| 0.2505 | 5.0 | 1305 | 0.2564 | 0.7887 | 0.7569 | 0.7724 | 0.9375 |
|
87 |
+
| 0.1474 | 6.0 | 1566 | 0.2461 | 0.8173 | 0.7569 | 0.7859 | 0.9459 |
|
88 |
+
| 0.1474 | 7.0 | 1827 | 0.2739 | 0.8004 | 0.7757 | 0.7879 | 0.9434 |
|
89 |
+
| 0.0956 | 8.0 | 2088 | 0.2566 | 0.8100 | 0.7905 | 0.8001 | 0.9486 |
|
90 |
+
| 0.0956 | 9.0 | 2349 | 0.2709 | 0.7859 | 0.7938 | 0.7898 | 0.9463 |
|
91 |
+
| 0.0712 | 10.0 | 2610 | 0.2811 | 0.8030 | 0.7992 | 0.8011 | 0.9467 |
|
92 |
|
93 |
|
94 |
### Framework versions
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1109957862
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:871872c759af59957578813bff68362259283eb7c2173ae4b5b197845237e87a
|
3 |
size 1109957862
|