zhuqi commited on
Commit
7b1959d
1 Parent(s): 9e3a64f

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ tags:
6
+ - t5-small
7
+ - text2text-generation
8
+ - natural language understanding
9
+ - conversational system
10
+ - task-oriented dialog
11
+ datasets:
12
+ - ConvLab/tm1
13
+ metrics:
14
+ - Dialog acts Accuracy
15
+ - Dialog acts F1
16
+
17
+ model-index:
18
+ - name: t5-small-nlu-tm1-context3
19
+ results:
20
+ - task:
21
+ type: text2text-generation
22
+ name: natural language understanding
23
+ dataset:
24
+ type: ConvLab/tm1
25
+ name: Taskmaster-1
26
+ split: test
27
+ revision: 187bd9f5e786d80f64b3d372386e330ae36d8488
28
+ metrics:
29
+ - type: Dialog acts Accuracy
30
+ value: 76.2
31
+ name: Accuracy
32
+ - type: Dialog acts F1
33
+ value: 56.2
34
+ name: F1
35
+
36
+ widget:
37
+ - text: "user: Hi there, could you please help me with an order of Pizza?\nsystem: Sure, where would you like to order you pizza from?\nuser: I would like to order a pizza from Domino's."
38
+ - text: "system: What kind of pizza are do you want to order?\nuser: I want to order a large pizza with chicken and pepperoni please.\nsystem: From which Domino's location would you like to order?\nuser: I would like to order from the Domino's closest to my house."
39
+
40
+ inference:
41
+ parameters:
42
+ max_length: 100
43
+
44
+ ---
45
+
46
+ # t5-small-nlu-tm1-context3
47
+
48
+ This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on [Taskmaster-1](https://huggingface.co/datasets/ConvLab/tm1) with context window size == 3.
49
+
50
+ Refer to [ConvLab-3](https://github.com/ConvLab/ConvLab-3) for model description and usage.
51
+
52
+ ## Training procedure
53
+
54
+ ### Training hyperparameters
55
+
56
+ The following hyperparameters were used during training:
57
+ - learning_rate: 0.001
58
+ - train_batch_size: 128
59
+ - eval_batch_size: 64
60
+ - seed: 42
61
+ - gradient_accumulation_steps: 2
62
+ - total_train_batch_size: 256
63
+ - optimizer: Adafactor
64
+ - lr_scheduler_type: linear
65
+ - num_epochs: 10.0
66
+
67
+ ### Framework versions
68
+
69
+ - Transformers 4.18.0
70
+ - Pytorch 1.10.2+cu102
71
+ - Datasets 1.18.3
72
+ - Tokenizers 0.11.0