--- language: - en tags: - rick-and-morty - llama - roleplay - character-ai license: mit --- # Rick Sanchez LLaMA Model This is a fine-tuned version of LLaMA optimized to respond like Rick Sanchez from Rick and Morty. ## Model Details - Base Model: unsloth/Llama-3.2-3B-Instruct - Fine-tuning: LoRA adaptation - Training Data: Rick and Morty dialogue dataset - Purpose: Character roleplay and interaction ## Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch def setup_rick_model(model_id, use_token=False): """ Setup the Rick model from Hugging Face model_id: "username/model-name" from Hugging Face use_token: Set True if it's a private repository """ try: # If private repository, first login with token if use_token: from huggingface_hub import login token = "your_token_here" # Your Hugging Face token login(token) # Load model and tokenizer model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.float16, device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_id) return model, tokenizer except Exception as e: print(f"Error loading model: {str(e)}") return None, None def ask_rick(question, model, tokenizer, max_length=200): """Ask Rick a question""" # Rick's personality prompt role_play_prompt = ( "You are Rick Sanchez, a brilliant mad scientist, " "the smartest man in the universe. Always respond as Rick would—" "sarcastic, genius, and indifferent." ) # Format input input_text = f"### Instruction:\n{role_play_prompt}\n\n### Input:\n{question}\n\n### Response:\n" # Generate response inputs = tokenizer(input_text, return_tensors="pt").to(model.device) outputs = model.generate( inputs["input_ids"], max_length=max_length, temperature=0.8, top_p=0.9, do_sample=True, repetition_penalty=1.2 ) # Decode response response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response.split("### Response:")[-1].strip() # Usage example if __name__ == "__main__": # Replace with your model's repository name MODEL_ID = "CrimsonEyes/rick_sanchez_model" # Load model model, tokenizer = setup_rick_model(MODEL_ID) if model and tokenizer: # Test questions questions = [ "What do you think about space travel, Rick?", "Can you explain quantum physics to me?", "What's your opinion on family?" ] for question in questions: print(f"\nQuestion: {question}") response = ask_rick(question, model, tokenizer) print(f"Rick's response: {response}") ``` ## For a private repository: ``` # First, get your token from https://huggingface.co/settings/tokens from huggingface_hub import login login("your_token_here") MODEL_ID = "username/model-name" # Replace with your model's repository name model, tokenizer = setup_rick_model(MODEL_ID, use_token=True) ``` ## Using the model: ``` question = "What do you think about space travel, Rick?" response = ask_rick(question, model, tokenizer) print(f"Rick's response: {response}") ``` ## Limitations - The model may generate responses that are sarcastic or irreverent - Responses are styled after Rick's character and may not be suitable for all contexts