rl course unit1 hands-on
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 209.91 +/- 76.39
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79c2f0036320>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79c2f00363b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79c2f0036440>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79c2f00364d0>", "_build": "<function ActorCriticPolicy._build at 0x79c2f0036560>", "forward": "<function ActorCriticPolicy.forward at 0x79c2f00365f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79c2f0036680>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79c2f0036710>", "_predict": "<function ActorCriticPolicy._predict at 0x79c2f00367a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79c2f0036830>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79c2f00368c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79c2f0036950>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79c2effdbdc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1709450343226283939, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAC1bbD4TuC8/TOwOPu0iAb9oMxU+iGADvgAAAAAAAAAAvfyhPuEMmD6/M4W9hzOFvn+8xDygr0C9AAAAAAAAAAATOQO+S9LYPqBK67xvULy+g+EnvePW8jwAAAAAAAAAAO2RLr7+1z0/9Z28vXf/Gb/w/2u928OnPQAAAAAAAAAAmq9avcNJLrq4UC+zPPzwr1c40Dq+aM8zAACAPwAAgD/Nh2o+lx0mvc0oWb5f2Yq+c1qVvjP3Tr8AAIA/AACAP0Akpz3U8Lg/5bvtPgoq/b00jts8wv+zPQAAAAAAAAAAAA/HPKBBmT+bJd89pl4ovychqzyyzjo9AAAAAAAAAACNaLW9Vq9WPV/URT3Jjye+C28DO9pxiz0AAAAAAAAAAGa53L2FoPu7xmDSPaHLar2ZkF+9g89FvgAAgD8AAIA/M/6mPQykRj7eLze9ZVhIvg+wMjwaYma8AAAAAAAAAACNX7S9jzGqP3ab7r6+ldu+AU7GveX1j70AAAAAAAAAAEZFjD5PA2E9gDLSvY58u71blBW8Uw8sPQAAAAAAAAAAxvMmPikcIT1hEz09sQYivtGQFj33XI48AAAAAAAAAADNfDq+9j4HvP2M1rpRIUw7EoVSPV1QVbwAAIA/AACAP2C7hD7Azug+NiK/vZmSvr50oWI9g0/RvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVAQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG8zuafBeomMAWyUTQIBjAF0lEdAniKEoScslXV9lChoBkdAcT3LKmsNlWgHS8xoCEdAniKxhttQ9HV9lChoBkdAchMChew9q2gHTS0BaAhHQJ4ivH0btJF1fZQoaAZHQHHUmr0aqCJoB00FAWgIR0CeJdFoL5RCdX2UKGgGR0BxsfQUpNKzaAdL3WgIR0CeJkA2AG0NdX2UKGgGR0BwnO7g88s+aAdNEwFoCEdAniZAu7HyVnV9lChoBkfAHXc94eLeh2gHS5ZoCEdAnia5QLux8nV9lChoBkdAKLWAXl8w6GgHS8hoCEdAnicj9S/CZXV9lChoBkdAbIL0g8r7O2gHS+doCEdAnidJGrjo6nV9lChoBkdAOADHjp9qlGgHS61oCEdAnidA3gk1M3V9lChoBkc/+Ai+tbLU1GgHS8VoCEdAnidqXSjQA3V9lChoBkdAbs8ir1dxAGgHS+RoCEdAnijx1HOKO3V9lChoBkdAcdDrCFbml2gHS+xoCEdAni1vYWcjJXV9lChoBkdAZuGfywwCbWgHTfYBaAhHQJ4tdeJHiFV1fZQoaAZHwCV9sabWmP5oB0uFaAhHQJ4tut6ol2N1fZQoaAZHQG9aVyeZof1oB0vnaAhHQJ4tyZML4N91fZQoaAZHQHFV1GG21D1oB0vNaAhHQJ4uEjzI3it1fZQoaAZHQG/1H/cWTHNoB0vdaAhHQJ4ug1aW5Yp1fZQoaAZHQF7Bd9Dx9XtoB03oA2gIR0CeLoSuyNXHdX2UKGgGR0BwNSA4GUwBaAdL+2gIR0CeLxuscQyzdX2UKGgGR0BwFDAwfyPNaAdNCgFoCEdAnjBhFiKBNHV9lChoBkdAcDi0ZWJaaGgHTR8BaAhHQJ4w5FtsN2F1fZQoaAZHQEpM8wHqu8toB0uyaAhHQJ40jvCuU2V1fZQoaAZHwCdlvES/TLJoB0uhaAhHQJ41GpLmITJ1fZQoaAZHP/JFhoduHetoB0vZaAhHQJ4246BAfMh1fZQoaAZHQG808jRlYlpoB0v3aAhHQJ45wz1schl1fZQoaAZHQF8wF6zE74loB03oA2gIR0CeOfD6Fds0dX2UKGgGR0BwAn4xk/bCaAdNEQFoCEdAnjoYB3iaRnV9lChoBkdAcQ/erdWQwWgHTR8BaAhHQJ464bDMvAZ1fZQoaAZHQHBQ+4Cp3otoB0vyaAhHQJ47sr+YMOR1fZQoaAZHQDBPhUBGQS1oB0uhaAhHQJ48kfq5byJ1fZQoaAZHQGyOlyJbdJtoB00aAWgIR0CePbCJXQt0dX2UKGgGR0BwgSX/o7muaAdL9mgIR0CeP0rxiG34dX2UKGgGR0A4N8gpz90jaAdLpmgIR0CeP/RCQcPwdX2UKGgGR0BwMwYVIqb0aAdL82gIR0CeQPUqQRwqdX2UKGgGR0BhVBuwX668aAdN6ANoCEdAnkEAljVhC3V9lChoBkdAcRaxZMcp9mgHS8doCEdAnkMfluFYdXV9lChoBkdAbpPdoFmnO2gHS91oCEdAnkMfzasZHnV9lChoBkdAb+OGRFI/aGgHTQUBaAhHQJ5DulBQemx1fZQoaAZHQG9bBSUC7shoB00EAWgIR0CeQ9J9iMHbdX2UKGgGR0BvsC83++/QaAdL52gIR0CeRUGbCrLhdX2UKGgGR0Bs+dvZRKpUaAdL2mgIR0CeRetNBWxRdX2UKGgGR0Blt9jqfOD8aAdN6ANoCEdAnkYTJlrdnHV9lChoBkdAYSxOsT37DWgHTegDaAhHQJ5HAcLjPv91fZQoaAZHQFylSg5BC2NoB03oA2gIR0CeRynUDuBudX2UKGgGR0Bx+eTFERapaAdL2mgIR0CeR1UxEfDDdX2UKGgGR0Bu+LBGhEjPaAdL5WgIR0CeSCfw7T2GdX2UKGgGR0BubmB6KLsKaAdL1GgIR0CeSG/zJ6ppdX2UKGgGR0BuXLz7MxGlaAdL3GgIR0CeSKFnqVyFdX2UKGgGR0BBhJfhMrVfaAdLgWgIR0CeSfFSsKb8dX2UKGgGR0BvLBG2CuloaAdL42gIR0CeSobG3nZCdX2UKGgGR0Bv9tM/QjUvaAdL6WgIR0CeSrT1kDp1dX2UKGgGR0BwWJx//echaAdL3WgIR0CeSszundftdX2UKGgGR0Arxqnm7rcCaAdLg2gIR0CeSwFEiMYNdX2UKGgGR0BqLbLOiWVvaAdN6ANoCEdAnktJ4nndPHV9lChoBkdAMeOj/MnqmmgHS8xoCEdAnkv9tuUD+3V9lChoBkdAcLi6mfoRqWgHS9ZoCEdAnk2K8pTdcnV9lChoBkdAbblo+OfdymgHTRMBaAhHQJ5NieiBXjl1fZQoaAZHQHC3CVnmJWNoB0vDaAhHQJ5OGycCo0h1fZQoaAZHQG3Bc8La24NoB0vXaAhHQJ5OZtqHoHN1fZQoaAZHQHBhlPnB+F1oB0vdaAhHQJ5PEAR02cd1fZQoaAZHQG6yfUvwmVtoB00wAWgIR0CeT+r8BMi9dX2UKGgGR0BxO1jz7MxHaAdL1mgIR0CeUDwGW2PUdX2UKGgGR0BwKt9iMHbAaAdL5GgIR0CeUX3xnWaudX2UKGgGR0BwdfmzSkTIaAdL8WgIR0CeUZ3iJfpmdX2UKGgGR0Bg0eBlMAWBaAdN6ANoCEdAnlHdelbeM3V9lChoBkdAItyu6mO2iWgHS95oCEdAnlKWDlHSW3V9lChoBkdAbNlIkJKJ22gHTR0BaAhHQJ5TGNfgJkZ1fZQoaAZHQGD9JcPe54JoB03oA2gIR0CeUyrNW2gGdX2UKGgGR0BwZ9f+jua4aAdNJAFoCEdAnlOOT7l7t3V9lChoBkdAcCrsU7CBPWgHS9poCEdAnlP6VY6nznV9lChoBkdAbSq9PDYRNGgHS+hoCEdAnlRatozvZ3V9lChoBkfAM3QE+xGDtmgHS9NoCEdAnlSPUjLSu3V9lChoBkdAcc1tMfzSTmgHS+NoCEdAnlSzaoMrmXV9lChoBkdAconCsOoYN2gHS91oCEdAnlVanrIHT3V9lChoBkdAQxYh2W6bv2gHS6RoCEdAnlYJFgDzRXV9lChoBkdAbcC0qH4462gHS+doCEdAnlaWNNrTIHV9lChoBkdAbH622oegc2gHS9xoCEdAnldvtY0VJ3V9lChoBkdAcACkEs8PnWgHTScBaAhHQJ5YG2AoXsR1fZQoaAZHQG5UA7PppvhoB0vmaAhHQJ5Y2ZCv5gx1fZQoaAZHQG2EcejmCAdoB0vkaAhHQJ5ZYabWmP51fZQoaAZHQHA71pfx+a1oB0vsaAhHQJ5ZkSCe2/l1fZQoaAZHQGk0BG6PKdRoB0vraAhHQJ5aESHuZ1F1fZQoaAZHQDo69Htnf2toB0unaAhHQJ5aILpiZv11fZQoaAZHQHCkEDQqqfhoB005AWgIR0CeWqSQHRkVdX2UKGgGR0BvmN90A93baAdL6WgIR0CeWxrO7g89dX2UKGgGR0BwlXHYHxBmaAdNBwFoCEdAnlvLWRRuTHV9lChoBkdAcWcPJq7AcmgHS8poCEdAnlv8URFqjHV9lChoBkdAb5soVEd/8WgHTSkBaAhHQJ5cX+vQnhN1fZQoaAZHQHB3Gpda+vhoB00SAWgIR0CeXH+VC5VfdX2UKGgGR0BueHi97F85aAdNbgJoCEdAnl0MRxtHhHV9lChoBkdAb9eAd4mkWWgHS/ZoCEdAnl2gOBlMAXV9lChoBkdAcABQ40dilWgHS+RoCEdAnl382rGR3nV9lChoBkfAHZQNCqp97WgHS59oCEdAnl51r6+FlHV9lChoBkdAO8uPNmlImWgHS8poCEdAnl8Cx3V093V9lChoBkdAcWrfOUt7KWgHS95oCEdAnl8WkFfReHV9lChoBkdAbmYbwSamXWgHS/poCEdAnl8rpV0cO3V9lChoBkdAYhJpqREF4mgHTegDaAhHQJ5g1d7fHgh1fZQoaAZHQG5L13dKujhoB00HAWgIR0CeYNPk7wKCdX2UKGgGR0BwF07OmixnaAdL52gIR0CeYOjQzDXOdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:da94a47ca43845f2814efe9011c7613627ea1f892298c82df49269c0546376b3
|
3 |
+
size 147995
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x79c2f0036320>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79c2f00363b0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79c2f0036440>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79c2f00364d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x79c2f0036560>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x79c2f00365f0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x79c2f0036680>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79c2f0036710>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x79c2f00367a0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79c2f0036830>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79c2f00368c0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x79c2f0036950>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x79c2effdbdc0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1709450343226283939,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAC1bbD4TuC8/TOwOPu0iAb9oMxU+iGADvgAAAAAAAAAAvfyhPuEMmD6/M4W9hzOFvn+8xDygr0C9AAAAAAAAAAATOQO+S9LYPqBK67xvULy+g+EnvePW8jwAAAAAAAAAAO2RLr7+1z0/9Z28vXf/Gb/w/2u928OnPQAAAAAAAAAAmq9avcNJLrq4UC+zPPzwr1c40Dq+aM8zAACAPwAAgD/Nh2o+lx0mvc0oWb5f2Yq+c1qVvjP3Tr8AAIA/AACAP0Akpz3U8Lg/5bvtPgoq/b00jts8wv+zPQAAAAAAAAAAAA/HPKBBmT+bJd89pl4ovychqzyyzjo9AAAAAAAAAACNaLW9Vq9WPV/URT3Jjye+C28DO9pxiz0AAAAAAAAAAGa53L2FoPu7xmDSPaHLar2ZkF+9g89FvgAAgD8AAIA/M/6mPQykRj7eLze9ZVhIvg+wMjwaYma8AAAAAAAAAACNX7S9jzGqP3ab7r6+ldu+AU7GveX1j70AAAAAAAAAAEZFjD5PA2E9gDLSvY58u71blBW8Uw8sPQAAAAAAAAAAxvMmPikcIT1hEz09sQYivtGQFj33XI48AAAAAAAAAADNfDq+9j4HvP2M1rpRIUw7EoVSPV1QVbwAAIA/AACAP2C7hD7Azug+NiK/vZmSvr50oWI9g0/RvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVAQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG8zuafBeomMAWyUTQIBjAF0lEdAniKEoScslXV9lChoBkdAcT3LKmsNlWgHS8xoCEdAniKxhttQ9HV9lChoBkdAchMChew9q2gHTS0BaAhHQJ4ivH0btJF1fZQoaAZHQHHUmr0aqCJoB00FAWgIR0CeJdFoL5RCdX2UKGgGR0BxsfQUpNKzaAdL3WgIR0CeJkA2AG0NdX2UKGgGR0BwnO7g88s+aAdNEwFoCEdAniZAu7HyVnV9lChoBkfAHXc94eLeh2gHS5ZoCEdAnia5QLux8nV9lChoBkdAKLWAXl8w6GgHS8hoCEdAnicj9S/CZXV9lChoBkdAbIL0g8r7O2gHS+doCEdAnidJGrjo6nV9lChoBkdAOADHjp9qlGgHS61oCEdAnidA3gk1M3V9lChoBkc/+Ai+tbLU1GgHS8VoCEdAnidqXSjQA3V9lChoBkdAbs8ir1dxAGgHS+RoCEdAnijx1HOKO3V9lChoBkdAcdDrCFbml2gHS+xoCEdAni1vYWcjJXV9lChoBkdAZuGfywwCbWgHTfYBaAhHQJ4tdeJHiFV1fZQoaAZHwCV9sabWmP5oB0uFaAhHQJ4tut6ol2N1fZQoaAZHQG9aVyeZof1oB0vnaAhHQJ4tyZML4N91fZQoaAZHQHFV1GG21D1oB0vNaAhHQJ4uEjzI3it1fZQoaAZHQG/1H/cWTHNoB0vdaAhHQJ4ug1aW5Yp1fZQoaAZHQF7Bd9Dx9XtoB03oA2gIR0CeLoSuyNXHdX2UKGgGR0BwNSA4GUwBaAdL+2gIR0CeLxuscQyzdX2UKGgGR0BwFDAwfyPNaAdNCgFoCEdAnjBhFiKBNHV9lChoBkdAcDi0ZWJaaGgHTR8BaAhHQJ4w5FtsN2F1fZQoaAZHQEpM8wHqu8toB0uyaAhHQJ40jvCuU2V1fZQoaAZHwCdlvES/TLJoB0uhaAhHQJ41GpLmITJ1fZQoaAZHP/JFhoduHetoB0vZaAhHQJ4246BAfMh1fZQoaAZHQG808jRlYlpoB0v3aAhHQJ45wz1schl1fZQoaAZHQF8wF6zE74loB03oA2gIR0CeOfD6Fds0dX2UKGgGR0BwAn4xk/bCaAdNEQFoCEdAnjoYB3iaRnV9lChoBkdAcQ/erdWQwWgHTR8BaAhHQJ464bDMvAZ1fZQoaAZHQHBQ+4Cp3otoB0vyaAhHQJ47sr+YMOR1fZQoaAZHQDBPhUBGQS1oB0uhaAhHQJ48kfq5byJ1fZQoaAZHQGyOlyJbdJtoB00aAWgIR0CePbCJXQt0dX2UKGgGR0BwgSX/o7muaAdL9mgIR0CeP0rxiG34dX2UKGgGR0A4N8gpz90jaAdLpmgIR0CeP/RCQcPwdX2UKGgGR0BwMwYVIqb0aAdL82gIR0CeQPUqQRwqdX2UKGgGR0BhVBuwX668aAdN6ANoCEdAnkEAljVhC3V9lChoBkdAcRaxZMcp9mgHS8doCEdAnkMfluFYdXV9lChoBkdAbpPdoFmnO2gHS91oCEdAnkMfzasZHnV9lChoBkdAb+OGRFI/aGgHTQUBaAhHQJ5DulBQemx1fZQoaAZHQG9bBSUC7shoB00EAWgIR0CeQ9J9iMHbdX2UKGgGR0BvsC83++/QaAdL52gIR0CeRUGbCrLhdX2UKGgGR0Bs+dvZRKpUaAdL2mgIR0CeRetNBWxRdX2UKGgGR0Blt9jqfOD8aAdN6ANoCEdAnkYTJlrdnHV9lChoBkdAYSxOsT37DWgHTegDaAhHQJ5HAcLjPv91fZQoaAZHQFylSg5BC2NoB03oA2gIR0CeRynUDuBudX2UKGgGR0Bx+eTFERapaAdL2mgIR0CeR1UxEfDDdX2UKGgGR0Bu+LBGhEjPaAdL5WgIR0CeSCfw7T2GdX2UKGgGR0BubmB6KLsKaAdL1GgIR0CeSG/zJ6ppdX2UKGgGR0BuXLz7MxGlaAdL3GgIR0CeSKFnqVyFdX2UKGgGR0BBhJfhMrVfaAdLgWgIR0CeSfFSsKb8dX2UKGgGR0BvLBG2CuloaAdL42gIR0CeSobG3nZCdX2UKGgGR0Bv9tM/QjUvaAdL6WgIR0CeSrT1kDp1dX2UKGgGR0BwWJx//echaAdL3WgIR0CeSszundftdX2UKGgGR0Arxqnm7rcCaAdLg2gIR0CeSwFEiMYNdX2UKGgGR0BqLbLOiWVvaAdN6ANoCEdAnktJ4nndPHV9lChoBkdAMeOj/MnqmmgHS8xoCEdAnkv9tuUD+3V9lChoBkdAcLi6mfoRqWgHS9ZoCEdAnk2K8pTdcnV9lChoBkdAbblo+OfdymgHTRMBaAhHQJ5NieiBXjl1fZQoaAZHQHC3CVnmJWNoB0vDaAhHQJ5OGycCo0h1fZQoaAZHQG3Bc8La24NoB0vXaAhHQJ5OZtqHoHN1fZQoaAZHQHBhlPnB+F1oB0vdaAhHQJ5PEAR02cd1fZQoaAZHQG6yfUvwmVtoB00wAWgIR0CeT+r8BMi9dX2UKGgGR0BxO1jz7MxHaAdL1mgIR0CeUDwGW2PUdX2UKGgGR0BwKt9iMHbAaAdL5GgIR0CeUX3xnWaudX2UKGgGR0BwdfmzSkTIaAdL8WgIR0CeUZ3iJfpmdX2UKGgGR0Bg0eBlMAWBaAdN6ANoCEdAnlHdelbeM3V9lChoBkdAItyu6mO2iWgHS95oCEdAnlKWDlHSW3V9lChoBkdAbNlIkJKJ22gHTR0BaAhHQJ5TGNfgJkZ1fZQoaAZHQGD9JcPe54JoB03oA2gIR0CeUyrNW2gGdX2UKGgGR0BwZ9f+jua4aAdNJAFoCEdAnlOOT7l7t3V9lChoBkdAcCrsU7CBPWgHS9poCEdAnlP6VY6nznV9lChoBkdAbSq9PDYRNGgHS+hoCEdAnlRatozvZ3V9lChoBkfAM3QE+xGDtmgHS9NoCEdAnlSPUjLSu3V9lChoBkdAcc1tMfzSTmgHS+NoCEdAnlSzaoMrmXV9lChoBkdAconCsOoYN2gHS91oCEdAnlVanrIHT3V9lChoBkdAQxYh2W6bv2gHS6RoCEdAnlYJFgDzRXV9lChoBkdAbcC0qH4462gHS+doCEdAnlaWNNrTIHV9lChoBkdAbH622oegc2gHS9xoCEdAnldvtY0VJ3V9lChoBkdAcACkEs8PnWgHTScBaAhHQJ5YG2AoXsR1fZQoaAZHQG5UA7PppvhoB0vmaAhHQJ5Y2ZCv5gx1fZQoaAZHQG2EcejmCAdoB0vkaAhHQJ5ZYabWmP51fZQoaAZHQHA71pfx+a1oB0vsaAhHQJ5ZkSCe2/l1fZQoaAZHQGk0BG6PKdRoB0vraAhHQJ5aESHuZ1F1fZQoaAZHQDo69Htnf2toB0unaAhHQJ5aILpiZv11fZQoaAZHQHCkEDQqqfhoB005AWgIR0CeWqSQHRkVdX2UKGgGR0BvmN90A93baAdL6WgIR0CeWxrO7g89dX2UKGgGR0BwlXHYHxBmaAdNBwFoCEdAnlvLWRRuTHV9lChoBkdAcWcPJq7AcmgHS8poCEdAnlv8URFqjHV9lChoBkdAb5soVEd/8WgHTSkBaAhHQJ5cX+vQnhN1fZQoaAZHQHB3Gpda+vhoB00SAWgIR0CeXH+VC5VfdX2UKGgGR0BueHi97F85aAdNbgJoCEdAnl0MRxtHhHV9lChoBkdAb9eAd4mkWWgHS/ZoCEdAnl2gOBlMAXV9lChoBkdAcABQ40dilWgHS+RoCEdAnl382rGR3nV9lChoBkfAHZQNCqp97WgHS59oCEdAnl51r6+FlHV9lChoBkdAO8uPNmlImWgHS8poCEdAnl8Cx3V093V9lChoBkdAcWrfOUt7KWgHS95oCEdAnl8WkFfReHV9lChoBkdAbmYbwSamXWgHS/poCEdAnl8rpV0cO3V9lChoBkdAYhJpqREF4mgHTegDaAhHQJ5g1d7fHgh1fZQoaAZHQG5L13dKujhoB00HAWgIR0CeYNPk7wKCdX2UKGgGR0BwF07OmixnaAdL52gIR0CeYOjQzDXOdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 310,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5ee84a60b61480894cdbdd4150b3fe14b68e199ac20969239c927592a5f3efc5
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:458b38f3169115d40a5f800841833a44e0b68e99294b5aa6c5acb92197ed8def
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.25.2
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (181 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 209.90530759999996, "std_reward": 76.39353444752355, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-03-03T07:56:08.387480"}
|