--- license: apache-2.0 tags: - moe - frankenmoe - merge - mergekit - lazymergekit - eren23/dpo-binarized-NeuralTrix-7B - macadeliccc/WestLake-7B-v2-laser-truthy-dpo - Weyaxi/OpenHermes-2.5-neural-chat-v3-2-Slerp - cognitivecomputations/WestLake-7B-v2-laser base_model: - eren23/dpo-binarized-NeuralTrix-7B - macadeliccc/WestLake-7B-v2-laser-truthy-dpo - Weyaxi/OpenHermes-2.5-neural-chat-v3-2-Slerp - cognitivecomputations/WestLake-7B-v2-laser --- # CrystalMistral-24B CrystalMistral-24B is a Mixure of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [eren23/dpo-binarized-NeuralTrix-7B](https://huggingface.co/eren23/dpo-binarized-NeuralTrix-7B) * [macadeliccc/WestLake-7B-v2-laser-truthy-dpo](https://huggingface.co/macadeliccc/WestLake-7B-v2-laser-truthy-dpo) * [Weyaxi/OpenHermes-2.5-neural-chat-v3-2-Slerp](https://huggingface.co/Weyaxi/OpenHermes-2.5-neural-chat-v3-2-Slerp) * [cognitivecomputations/WestLake-7B-v2-laser](https://huggingface.co/cognitivecomputations/WestLake-7B-v2-laser) ## 🧩 Configuration ```yaml base_model: eren23/dpo-binarized-NeuralTrix-7B gate_mode: hidden dtype: bfloat16 experts: - source_model: eren23/dpo-binarized-NeuralTrix-7B positive_prompts: - "Generate a response to a given situation" - "Explain the concept of climate change" - source_model: macadeliccc/WestLake-7B-v2-laser-truthy-dpo positive_prompts: - "What is the capital of France?" - "Who wrote the novel 'Pride and Prejudice'?" - source_model: Weyaxi/OpenHermes-2.5-neural-chat-v3-2-Slerp positive_prompts: - "Write a short poem about spring" - "Design a logo for a tech startup called 'GreenLeaf'" - source_model: cognitivecomputations/WestLake-7B-v2-laser positive_prompts: - "Solve the equation x^2 + 3x - 10 = 0" - "Calculate the area of a circle with radius 5 units" ``` ## 💻 Usage ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "Crystalcareai/CrystalMistral-24B" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, ) messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```