Crystalcareai commited on
Commit
008f139
·
verified ·
1 Parent(s): 7014657

Upload 3 files

Browse files
Files changed (3) hide show
  1. configuration_gemmoe.py +165 -0
  2. modeling_gemmoe.py +1477 -0
  3. tokenization_gemmoe.py +311 -0
configuration_gemmoe.py ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ Gemmoe model configuration"""
16
+
17
+ from ...configuration_utils import PretrainedConfig
18
+ from ...utils import logging
19
+
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+ GEMMOE_PRETRAINED_CONFIG_ARCHIVE_MAP = {
24
+ "Crystalcareai/GemMoE-Beta-1": "https://huggingface.co/Crystalcareai/GemMoE-Beta-1/resolve/main/config.json",
25
+ }
26
+
27
+
28
+ class GemmoeConfig(PretrainedConfig):
29
+ r"""
30
+ This is the configuration class to store the configuration of a [`GemmoeModel`]. It is used to instantiate a Gemmoe
31
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
32
+ defaults will yield a similar configuration to that of the Gemmoe-7B.
33
+
34
+ e.g. [mhenrichsen/gemmoe-7b](https://huggingface.co/mhenrichsen/gemmoe-7b)
35
+
36
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
37
+ documentation from [`PretrainedConfig`] for more information.
38
+
39
+ Args:
40
+ vocab_size (`int`, *optional*, defaults to 256000):
41
+ Vocabulary size of the Gemmoe model. Defines the number of different tokens that can be represented by the
42
+ `inputs_ids` passed when calling [`GemmoeModel`]
43
+ hidden_size (`int`, *optional*, defaults to 3072):
44
+ Dimension of the hidden representations.
45
+ intermediate_size (`int`, *optional*, defaults to 24576):
46
+ Dimension of the MLP representations.
47
+ num_hidden_layers (`int`, *optional*, defaults to 28):
48
+ Number of hidden layers in the Transformer decoder.
49
+ num_attention_heads (`int`, *optional*, defaults to 16):
50
+ Number of attention heads for each attention layer in the Transformer decoder.
51
+ num_key_value_heads (`int`, *optional*, defaults to 16):
52
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
53
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
54
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
55
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
56
+ by meanpooling all the original heads within that group. For more details checkout [this
57
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
58
+ `num_attention_heads`.
59
+ head_dim (`int`, *optional*, defaults to 256):
60
+ The attention head dimension.
61
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
62
+ The non-linear activation function (function or string) in the decoder.
63
+ max_position_embeddings (`int`, *optional*, defaults to 8192):
64
+ The maximum sequence length that this model might ever be used with.
65
+ initializer_range (`float`, *optional*, defaults to 0.02):
66
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
67
+ rms_norm_eps (`float`, *optional*, defaults to 1e-6):
68
+ The epsilon used by the rms normalization layers.
69
+ use_cache (`bool`, *optional*, defaults to `True`):
70
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
71
+ relevant if `config.is_decoder=True`.
72
+ pad_token_id (`int`, *optional*, defaults to 0):
73
+ Padding token id.
74
+ eos_token_id (`int`, *optional*, defaults to 1):
75
+ End of stream token id.
76
+ bos_token_id (`int`, *optional*, defaults to 2):
77
+ Beginning of stream token id.
78
+ tie_word_embeddings (`bool`, *optional*, defaults to `True`):
79
+ Whether to tie weight embeddings
80
+ rope_theta (`float`, *optional*, defaults to 10000.0):
81
+ The base period of the RoPE embeddings.
82
+ attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
83
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
84
+ attention_dropout (`float`, *optional*, defaults to 0.0):
85
+ The dropout ratio for the attention probabilities.
86
+ num_experts_per_tok (`int`, *optional*, defaults to 2):
87
+ The number of experts used in the sparse mixture of experts layer.
88
+ num_local_experts (`int`, *optional*, defaults to 8):
89
+ The number of local experts used in the sparse mixture of experts layer.
90
+ router_aux_loss_coef (`float`, *optional*, defaults to 0.01):
91
+ The coefficient for the auxiliary loss of the router.
92
+ output_router_logits (`bool`, *optional*, defaults to `False`):
93
+ Whether or not to output the logits of the routers. They are useful for computing the router loss, and
94
+ should not be returned during inference.
95
+
96
+ ```python
97
+ >>> from transformers import GemmoeModel, GemmoeConfig
98
+
99
+ >>> # Initializing a Gemmoe gemmoe-7b style configuration
100
+ >>> configuration = GemmoeConfig()
101
+
102
+ >>> # Initializing a model from the gemmoe-7b style configuration
103
+ >>> model = GemmoeModel(configuration)
104
+
105
+ >>> # Accessing the model configuration
106
+ >>> configuration = model.config
107
+ ```"""
108
+
109
+ model_type = "gemmoe"
110
+ keys_to_ignore_at_inference = ["past_key_values"]
111
+
112
+ def __init__(
113
+ self,
114
+ vocab_size=256000,
115
+ hidden_size=3072,
116
+ intermediate_size=24576,
117
+ num_hidden_layers=28,
118
+ num_attention_heads=16,
119
+ num_key_value_heads=16,
120
+ head_dim=256,
121
+ hidden_act="gelu",
122
+ max_position_embeddings=8192,
123
+ initializer_range=0.02,
124
+ rms_norm_eps=1e-6,
125
+ use_cache=True,
126
+ pad_token_id=0,
127
+ eos_token_id=1,
128
+ bos_token_id=2,
129
+ tie_word_embeddings=True,
130
+ rope_theta=10000.0,
131
+ attention_bias=False,
132
+ attention_dropout=0.0,
133
+ num_experts_per_tok=2,
134
+ num_local_experts=8,
135
+ router_aux_loss_coef=0.01,
136
+ output_router_logits=False,
137
+ **kwargs,
138
+ ):
139
+ self.vocab_size = vocab_size
140
+ self.max_position_embeddings = max_position_embeddings
141
+ self.hidden_size = hidden_size
142
+ self.intermediate_size = intermediate_size
143
+ self.num_hidden_layers = num_hidden_layers
144
+ self.num_attention_heads = num_attention_heads
145
+ self.head_dim = head_dim
146
+ self.num_key_value_heads = num_key_value_heads
147
+ self.hidden_act = hidden_act
148
+ self.initializer_range = initializer_range
149
+ self.rms_norm_eps = rms_norm_eps
150
+ self.use_cache = use_cache
151
+ self.rope_theta = rope_theta
152
+ self.attention_bias = attention_bias
153
+ self.attention_dropout = attention_dropout
154
+ self.num_experts_per_tok = num_experts_per_tok
155
+ self.num_local_experts = num_local_experts
156
+ self.router_aux_loss_coef = router_aux_loss_coef
157
+ self.output_router_logits = output_router_logits
158
+
159
+ super().__init__(
160
+ pad_token_id=pad_token_id,
161
+ bos_token_id=bos_token_id,
162
+ eos_token_id=eos_token_id,
163
+ tie_word_embeddings=tie_word_embeddings,
164
+ **kwargs,
165
+ )
modeling_gemmoe.py ADDED
@@ -0,0 +1,1477 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 Google Inc. HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ PyTorch Gemmoe model."""
17
+
18
+ import math
19
+ import warnings
20
+ from typing import List, Optional, Tuple, Union
21
+
22
+ import torch
23
+ import torch.nn.functional as F
24
+ import torch.utils.checkpoint
25
+ from torch import nn
26
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
27
+
28
+ from ...activations import ACT2FN
29
+ from ...cache_utils import Cache, DynamicCache, StaticCache
30
+ from ...modeling_attn_mask_utils import (
31
+ _prepare_4d_causal_attention_mask,
32
+ )
33
+ from ...modeling_outputs import SequenceClassifierOutputWithPast, MoeModelOutputWithPast, MoeCausalLMOutputWithPast
34
+ from ...modeling_utils import PreTrainedModel
35
+ from ...pytorch_utils import ALL_LAYERNORM_LAYERS, is_torch_greater_or_equal_than_1_13
36
+ from ...utils import (
37
+ add_start_docstrings,
38
+ add_start_docstrings_to_model_forward,
39
+ is_flash_attn_2_available,
40
+ is_flash_attn_greater_or_equal_2_10,
41
+ logging,
42
+ replace_return_docstrings,
43
+ )
44
+ from ...utils.import_utils import is_torch_fx_available
45
+ from .configuration_gemmoe import GemmoeConfig
46
+
47
+ from math import sqrt as math_sqrt
48
+
49
+
50
+ if is_flash_attn_2_available():
51
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
52
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
53
+
54
+
55
+ # This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
56
+ # It means that the function will not be traced through and simply appear as a node in the graph.
57
+ if is_torch_fx_available():
58
+ if not is_torch_greater_or_equal_than_1_13:
59
+ import torch.fx
60
+
61
+ _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
62
+
63
+
64
+ logger = logging.get_logger(__name__)
65
+
66
+ _CONFIG_FOR_DOC = "GemmoeConfig"
67
+
68
+ def approx_gelu(x):
69
+ return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * x**3)))
70
+
71
+ def _get_unpad_data(attention_mask):
72
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
73
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
74
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
75
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
76
+ return (
77
+ indices,
78
+ cu_seqlens,
79
+ max_seqlen_in_batch,
80
+ )
81
+
82
+
83
+ class GemmoeRMSNorm(nn.Module):
84
+ def __init__(self, dim: int, eps: float = 1e-6):
85
+ super().__init__()
86
+ self.eps = eps
87
+ self.weight = nn.Parameter(torch.zeros(dim))
88
+
89
+ def _norm(self, x):
90
+ return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
91
+
92
+ def forward(self, x):
93
+ output = self._norm(x.float()).type_as(x)
94
+ return output * (self.weight + 1)
95
+
96
+ ALL_LAYERNORM_LAYERS.append(GemmoeRMSNorm)
97
+
98
+ class GemmoeRotaryEmbedding(nn.Module):
99
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
100
+ super().__init__()
101
+ self.dim = dim
102
+ self.max_position_embeddings = max_position_embeddings
103
+ self.base = base
104
+ self._set_cos_sin_cache(seq_len=max_position_embeddings, device=device, dtype=torch.get_default_dtype())
105
+
106
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
107
+ self.max_seq_len_cached = seq_len
108
+ freq_exponents = (2.0 / self.dim) * (
109
+ torch.arange(self.dim // 2, dtype=torch.int64, device="cpu").float()
110
+ )
111
+ timescale = self.base ** freq_exponents
112
+ positions = torch.arange(self.max_seq_len_cached, device="cpu", dtype=torch.int64).float()
113
+ radians_new = positions[..., None] / timescale[None, None, :]
114
+ radians_new = radians_new.squeeze(0)
115
+ emb = torch.cat((radians_new, radians_new), dim=-1)
116
+ cos = emb.cos().to(device=device, non_blocking=True)
117
+ sin = emb.sin().to(device=device, non_blocking=True)
118
+ self.register_buffer("cos_cached", cos, persistent=False)
119
+ self.register_buffer("sin_cached", sin, persistent=False)
120
+
121
+ def forward(self, x, position_ids=None, seq_len=None):
122
+ if seq_len is None:
123
+ seq_len = x.size(2)
124
+ if seq_len > self.max_seq_len_cached:
125
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
126
+ return (
127
+ self.cos_cached[:seq_len],
128
+ self.sin_cached[:seq_len],
129
+ )
130
+
131
+ def rotate_half(x):
132
+ """Rotates half the hidden dims of the input."""
133
+ x1 = x[..., : x.shape[-1] // 2]
134
+ x2 = x[..., x.shape[-1] // 2 :]
135
+ return torch.cat((-x2, x1), dim=-1)
136
+
137
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None):
138
+ """Applies Rotary Position Embedding to the query and key tensors."""
139
+ seq_len, dim = q.shape[-2], q.shape[-1]
140
+ cos = cos[:seq_len].view(1, 1, seq_len, dim)
141
+ sin = sin[:seq_len].view(1, 1, seq_len, dim)
142
+ q_embed = (q * cos) + (rotate_half(q) * sin)
143
+ k_embed = (k * cos) + (rotate_half(k) * sin)
144
+ return q_embed, k_embed
145
+
146
+ class GemmoeMLP(nn.Module):
147
+ def __init__(self, config):
148
+ super().__init__()
149
+ self.config = config
150
+ self.hidden_size = config.hidden_size
151
+ self.intermediate_size = config.intermediate_size
152
+
153
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
154
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
155
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
156
+
157
+ self.act_fn = approx_gelu
158
+
159
+ def forward(self, x):
160
+ return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
161
+
162
+ def load_balancing_loss_func(
163
+ self,
164
+ gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2, attention_mask: Optional[torch.Tensor] = None
165
+ ) -> float:
166
+ r"""
167
+ Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
168
+
169
+ See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
170
+ function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
171
+ experts is too unbalanced.
172
+
173
+ Args:
174
+ gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]):
175
+ Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
176
+ shape [batch_size X sequence_length, num_experts].
177
+ attention_mask (`torch.Tensor`, None):
178
+ The attention_mask used in forward function
179
+ shape [batch_size X sequence_length] if not None.
180
+ num_experts (`int`, *optional*):
181
+ Number of experts
182
+
183
+ Returns:
184
+ The auxiliary loss.
185
+ """
186
+ if gate_logits is None or not isinstance(gate_logits, tuple):
187
+ return 0
188
+
189
+ if isinstance(gate_logits, tuple):
190
+ compute_device = gate_logits[0].device
191
+ concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0)
192
+
193
+ routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1)
194
+ _, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
195
+ expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
196
+
197
+ if attention_mask is None:
198
+ # Compute the percentage of tokens routed to each experts
199
+ tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
200
+ # Compute the average probability of routing to these experts
201
+ router_prob_per_expert = torch.mean(routing_weights, dim=0)
202
+ else:
203
+ batch_size, sequence_length = attention_mask.shape
204
+ num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length)
205
+
206
+ # Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
207
+ expert_attention_mask = (
208
+ attention_mask[None, :, :, None, None]
209
+ .expand((num_hidden_layers, batch_size, sequence_length, 2, num_experts))
210
+ .reshape(-1, 2, num_experts)
211
+ .to(compute_device)
212
+ )
213
+ # Compute the percentage of tokens routed to each experts
214
+ tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
215
+ expert_attention_mask, dim=0
216
+ )
217
+
218
+ # Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
219
+ router_per_expert_attention_mask = (
220
+ attention_mask[None, :, :, None]
221
+ .expand((num_hidden_layers, batch_size, sequence_length, num_experts))
222
+ .reshape(-1, num_experts)
223
+ .to(compute_device)
224
+ )
225
+ # Compute the average probability of routing to these experts
226
+ router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
227
+ router_per_expert_attention_mask, dim=0
228
+ )
229
+
230
+ overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
231
+ return overall_loss * num_experts
232
+
233
+ def repeat_kv(self, hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
234
+ """
235
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
236
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
237
+ """
238
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
239
+ if n_rep == 1:
240
+ return hidden_states
241
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
242
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
243
+
244
+ class GemmoeAttention(nn.Module):
245
+ """
246
+ Multi-headed attention module for Gemmoe model.
247
+
248
+ Args:
249
+ config (GemmoeConfig): The configuration object for the Gemmoe model.
250
+ layer_idx (Optional[int]): The index of the layer. Default is None.
251
+ """
252
+
253
+ def __init__(self, config: GemmoeConfig, layer_idx: Optional[int] = None):
254
+ super().__init__()
255
+ self.config = config
256
+ self.layer_idx = layer_idx
257
+ if layer_idx is None:
258
+ logger.warning_once(
259
+ f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
260
+ "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
261
+ "when creating this class."
262
+ )
263
+ self.attention_dropout = config.attention_dropout
264
+ self.hidden_size = config.hidden_size
265
+ self.num_heads = config.num_attention_heads
266
+ self.head_dim = config.head_dim
267
+ self.num_key_value_heads = config.num_key_value_heads
268
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
269
+ self.max_position_embeddings = config.max_position_embeddings
270
+ self.rope_theta = config.rope_theta
271
+ self.is_causal = True
272
+
273
+ if self.hidden_size % self.num_heads != 0:
274
+ raise ValueError(
275
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
276
+ f" and `num_heads`: {self.num_heads})."
277
+ )
278
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
279
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
280
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
281
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
282
+ self.rotary_emb = GemmoeRotaryEmbedding(
283
+ self.head_dim,
284
+ max_position_embeddings=self.max_position_embeddings,
285
+ base=self.rope_theta,
286
+ )
287
+
288
+ def forward(
289
+ self,
290
+ hidden_states: torch.Tensor,
291
+ attention_mask: Optional[torch.Tensor] = None,
292
+ position_ids: Optional[torch.LongTensor] = None,
293
+ past_key_value: Optional[Cache] = None,
294
+ output_attentions: bool = False,
295
+ use_cache: bool = False,
296
+ cache_position: Optional[torch.LongTensor] = None,
297
+ **kwargs,
298
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
299
+ """
300
+ Forward pass of the attention module.
301
+
302
+ Args:
303
+ hidden_states (torch.Tensor): The input hidden states.
304
+ attention_mask (Optional[torch.Tensor]): The attention mask. Default is None.
305
+ position_ids (Optional[torch.LongTensor]): The position IDs. Default is None.
306
+ past_key_value (Optional[Cache]): The past key-value cache. Default is None.
307
+ output_attentions (bool): Whether to output the attention weights. Default is False.
308
+ use_cache (bool): Whether to use caching. Default is False.
309
+ cache_position (Optional[torch.LongTensor]): The cache position. Default is None.
310
+ **kwargs: Additional keyword arguments.
311
+
312
+ Returns:
313
+ Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
314
+ - The output hidden states.
315
+ - The attention weights (if `output_attentions=True`).
316
+ - The past key-value cache (if `use_cache=True`).
317
+ """
318
+ bsz, q_len, _ = hidden_states.size()
319
+
320
+ query_states = self.q_proj(hidden_states)
321
+ key_states = self.k_proj(hidden_states)
322
+ value_states = self.v_proj(hidden_states)
323
+
324
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
325
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
326
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
327
+
328
+ past_key_value = getattr(self, "past_key_value", past_key_value)
329
+
330
+ cos, sin = self.rotary_emb(value_states, position_ids, seq_len=None)
331
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, None)
332
+
333
+ if past_key_value is not None:
334
+ # sin and cos are specific to RoPE models; position_ids needed for the static cache
335
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
336
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
337
+
338
+ key_states = self.repeat_kv(key_states, self.num_key_value_groups)
339
+ value_states = self.repeat_kv(value_states, self.num_key_value_groups)
340
+
341
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
342
+
343
+ if attention_mask is not None: # no matter the length, we just slice it
344
+ if cache_position is not None:
345
+ causal_mask = attention_mask[:, :, cache_position, : key_states.shape[-2]]
346
+ else:
347
+ causal_mask = attention_mask
348
+ attn_weights = attn_weights + causal_mask
349
+
350
+ # upcast attention to fp32
351
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
352
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
353
+
354
+ attn_output = torch.matmul(attn_weights, value_states)
355
+
356
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
357
+ raise ValueError(
358
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
359
+ f" {attn_output.size()}"
360
+ )
361
+
362
+ attn_output = attn_output.transpose(1, 2).contiguous()
363
+ attn_output = attn_output.view(bsz, q_len, -1)
364
+
365
+ attn_output = self.o_proj(attn_output)
366
+
367
+ if not output_attentions:
368
+ attn_weights = None
369
+
370
+ return attn_output, attn_weights, past_key_value
371
+
372
+ class GemmoeFlashAttention2(GemmoeAttention):
373
+ """
374
+ Gemmoe flash attention module. This module inherits from `GemmoeAttention` as the weights of the module stays
375
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
376
+ flash attention and deal with padding tokens in case the input contains any of them.
377
+ """
378
+ def __init__(self, *args, **kwargs):
379
+ super().__init__(*args, **kwargs)
380
+ # TODO: Remove this attribute once Flash Attention for RoCm is bumped to 2.1.
381
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
382
+
383
+ def forward(
384
+ self,
385
+ hidden_states: torch.Tensor,
386
+ attention_mask: Optional[torch.LongTensor] = None,
387
+ position_ids: Optional[torch.LongTensor] = None,
388
+ past_key_value: Optional[Cache] = None,
389
+ output_attentions: bool = False,
390
+ use_cache: bool = False,
391
+ cache_position: Optional[torch.LongTensor] = None,
392
+ **kwargs,
393
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
394
+ output_attentions = False
395
+
396
+ bsz, q_len, _ = hidden_states.size()
397
+
398
+ query_states = self.q_proj(hidden_states)
399
+ key_states = self.k_proj(hidden_states)
400
+ value_states = self.v_proj(hidden_states)
401
+
402
+ # Flash attention requires the input to have the shape
403
+ # batch_size x seq_length x head_dim x hidden_dim
404
+ # therefore we just need to keep the original shape
405
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
406
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
407
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
408
+
409
+ cos, sin = self.rotary_emb(value_states, position_ids, seq_len=None)
410
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, None)
411
+
412
+ past_key_value = getattr(self, "past_key_value", past_key_value)
413
+ if past_key_value is not None:
414
+ # sin and cos are specific to RoPE models; position_ids needed for the static cache
415
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
416
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
417
+
418
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
419
+ # to be able to avoid many of these transpose/reshape/view.
420
+ query_states = query_states.transpose(1, 2)
421
+ key_states = key_states.transpose(1, 2)
422
+ value_states = value_states.transpose(1, 2)
423
+
424
+ dropout_rate = self.attention_dropout if self.training else 0.0
425
+
426
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
427
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
428
+ # cast them back in the correct dtype just to be sure everything works as expected.
429
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
430
+ # in fp32. (GemmoeRMSNorm handles it correctly)
431
+ input_dtype = query_states.dtype
432
+ if input_dtype == torch.float32:
433
+ if torch.is_autocast_enabled():
434
+ target_dtype = torch.get_autocast_gpu_dtype()
435
+ # Handle the case where the model is quantized
436
+ elif hasattr(self.config, "_pre_quantization_dtype"):
437
+ target_dtype = self.config._pre_quantization_dtype
438
+ else:
439
+ target_dtype = self.q_proj.weight.dtype
440
+
441
+ logger.warning_once(
442
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
443
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
444
+ f" {target_dtype}."
445
+ )
446
+ query_states = query_states.to(target_dtype)
447
+ key_states = key_states.to(target_dtype)
448
+ value_states = value_states.to(target_dtype)
449
+
450
+ attn_output = self._flash_attention_forward(
451
+ query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
452
+ )
453
+
454
+ attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
455
+ attn_output = self.o_proj(attn_output)
456
+
457
+ if not output_attentions:
458
+ attn_weights = None
459
+
460
+ return attn_output, attn_weights, past_key_value
461
+
462
+ def _flash_attention_forward(
463
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
464
+ ):
465
+ """
466
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
467
+ first unpad the input, then computes the attention scores and pad the final attention scores.
468
+
469
+ Args:
470
+ query_states (`torch.Tensor`):
471
+ Input query states to be passed to Flash Attention API
472
+ key_states (`torch.Tensor`):
473
+ Input key states to be passed to Flash Attention API
474
+ value_states (`torch.Tensor`):
475
+ Input value states to be passed to Flash Attention API
476
+ attention_mask (`torch.Tensor`):
477
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
478
+ position of padding tokens and 1 for the position of non-padding tokens.
479
+ dropout (`int`, *optional*):
480
+ Attention dropout
481
+ softmax_scale (`float`, *optional*):
482
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
483
+ """
484
+ if not self._flash_attn_uses_top_left_mask:
485
+ causal = self.is_causal
486
+ else:
487
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in GemmoeFlashAttention2 __init__.
488
+ causal = self.is_causal and query_length != 1
489
+
490
+ # Contains at least one padding token in the sequence
491
+ if attention_mask is not None:
492
+ batch_size = query_states.shape[0]
493
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
494
+ query_states, key_states, value_states, attention_mask, query_length
495
+ )
496
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
497
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
498
+
499
+ attn_output_unpad = flash_attn_varlen_func(
500
+ query_states,
501
+ key_states,
502
+ value_states,
503
+ cu_seqlens_q=cu_seqlens_q,
504
+ cu_seqlens_k=cu_seqlens_k,
505
+ max_seqlen_q=max_seqlen_in_batch_q,
506
+ max_seqlen_k=max_seqlen_in_batch_k,
507
+ dropout_p=dropout,
508
+ softmax_scale=softmax_scale,
509
+ causal=causal,
510
+ )
511
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
512
+ else:
513
+ attn_output = flash_attn_func(
514
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
515
+ )
516
+
517
+ return attn_output
518
+
519
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
520
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
521
+
522
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
523
+ key_layer = index_first_axis(
524
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
525
+ )
526
+ value_layer = index_first_axis(
527
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
528
+ )
529
+
530
+ if query_length == kv_seq_len:
531
+ query_layer = index_first_axis(
532
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
533
+ )
534
+ cu_seqlens_q = cu_seqlens_k
535
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
536
+ indices_q = indices_k
537
+ elif query_length == 1:
538
+ max_seqlen_in_batch_q = 1
539
+ cu_seqlens_q = torch.arange(
540
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
541
+ ) # There is a memcpy here, that is very bad.
542
+ indices_q = cu_seqlens_q[:-1]
543
+ query_layer = query_layer.squeeze(1)
544
+ else:
545
+ # The -q_len: slice assumes left padding.
546
+ attention_mask = attention_mask[:, -query_length:]
547
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
548
+
549
+ return (
550
+ query_layer,
551
+ key_layer,
552
+ value_layer,
553
+ indices_q,
554
+ (cu_seqlens_q, cu_seqlens_k),
555
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
556
+ )
557
+
558
+ class GemmoeSdpaAttention(GemmoeAttention):
559
+ """
560
+ Gemmoe attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
561
+ GemmoeAttention as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
562
+ SDPA API.
563
+ """
564
+ def repeat_kv(self, hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
565
+ """
566
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
567
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
568
+ """
569
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
570
+ if n_rep == 1:
571
+ return hidden_states
572
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
573
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
574
+
575
+ def forward(
576
+ self,
577
+ hidden_states: torch.Tensor,
578
+ attention_mask: Optional[torch.Tensor] = None,
579
+ position_ids: Optional[torch.LongTensor] = None,
580
+ past_key_value: Optional[Cache] = None,
581
+ output_attentions: bool = False,
582
+ use_cache: bool = False,
583
+ cache_position: Optional[torch.LongTensor] = None,
584
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
585
+ if output_attentions:
586
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
587
+ # logger.warning_once(
588
+ "GemmoeModel is using GemmoeSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
589
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
590
+ # )
591
+
592
+ return super().forward(
593
+ hidden_states=hidden_states,
594
+ attention_mask=attention_mask,
595
+ position_ids=position_ids,
596
+ past_key_value=past_key_value,
597
+ output_attentions=output_attentions,
598
+ use_cache=use_cache,
599
+ cache_position=cache_position,
600
+ ),
601
+
602
+ bsz, q_len, _ = hidden_states.size()
603
+
604
+ query_states = self.q_proj(hidden_states)
605
+ key_states = self.k_proj(hidden_states)
606
+ value_states = self.v_proj(hidden_states)
607
+
608
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
609
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
610
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
611
+
612
+ cos, sin = self.rotary_emb(value_states, position_ids, seq_len=None)
613
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, None)
614
+
615
+ past_key_value = getattr(self, "past_key_value", past_key_value)
616
+ if past_key_value is not None:
617
+ # sin and cos are specific to RoPE models; position_ids needed for the static cache
618
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
619
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
620
+
621
+ key_states = self.repeat_kv(key_states, self.num_key_value_groups)
622
+ value_states = self.repeat_kv(value_states, self.num_key_value_groups)
623
+
624
+ causal_mask = attention_mask
625
+ if attention_mask is not None and cache_position is not None:
626
+ causal_mask = causal_mask[:, :, cache_position, : key_states.shape[-2]]
627
+
628
+ # Cast query, key, and value states to the same dtype (bf16)
629
+ query_states = query_states.to(dtype=torch.bfloat16)
630
+ key_states = key_states.to(dtype=torch.bfloat16)
631
+ value_states = value_states.to(dtype=torch.bfloat16)
632
+
633
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
634
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
635
+ if query_states.device.type == "cuda" and causal_mask is not None:
636
+ query_states = query_states.contiguous()
637
+ key_states = key_states.contiguous()
638
+ value_states = value_states.contiguous()
639
+
640
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
641
+ query_states,
642
+ key_states,
643
+ value_states,
644
+ attn_mask=causal_mask,
645
+ dropout_p=self.attention_dropout if self.training else 0.0,
646
+ )
647
+
648
+ attn_output = attn_output.transpose(1, 2).contiguous()
649
+ attn_output = attn_output.view(bsz, q_len, -1)
650
+ attn_output = self.o_proj(attn_output)
651
+
652
+ return attn_output, None, past_key_value
653
+
654
+ GEMMOE_ATTENTION_CLASSES = {
655
+ "eager": GemmoeAttention,
656
+ "flash_attention_2": GemmoeFlashAttention2,
657
+ "sdpa": GemmoeSdpaAttention,
658
+ }
659
+
660
+ class GemmoeBlockSparseTop2MLP(nn.Module):
661
+ def __init__(self, config: GemmoeConfig):
662
+ super().__init__()
663
+ self.ffn_dim = config.intermediate_size
664
+ self.hidden_dim = config.hidden_size
665
+ self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
666
+ self.w2 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False)
667
+ self.w3 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
668
+ self.act_fn = ACT2FN[config.hidden_act]
669
+
670
+ def forward(self, hidden_states):
671
+ current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.w3(hidden_states)
672
+ current_hidden_states = self.w2(current_hidden_states)
673
+ return current_hidden_states
674
+
675
+
676
+ class GemmoeSparseMoeBlock(nn.Module):
677
+ def __init__(self, config):
678
+ super().__init__()
679
+ self.hidden_dim = config.hidden_size
680
+ self.ffn_dim = config.intermediate_size
681
+ self.num_experts = config.num_local_experts
682
+ self.top_k = 2
683
+
684
+ # gating
685
+ self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
686
+
687
+ self.experts = nn.ModuleList([GemmoeBlockSparseTop2MLP(config) for _ in range(self.num_experts)])
688
+
689
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
690
+ hidden_states = hidden_states.to(self.gate.weight.device)
691
+ batch_size, sequence_length, hidden_dim = hidden_states.shape
692
+ hidden_states = hidden_states.view(-1, hidden_dim)
693
+
694
+ # router_logits: (batch * sequence_length, n_experts)
695
+ router_logits = self.gate(hidden_states)
696
+ routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float32)
697
+ top_routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
698
+ top_routing_weights /= top_routing_weights.sum(dim=-1, keepdim=True)
699
+
700
+ # we cast back to the input dtype
701
+ top_routing_weights = top_routing_weights.to(hidden_states.dtype)
702
+
703
+ final_hidden_states = torch.zeros(
704
+ (batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
705
+ )
706
+
707
+ # Loop over all available experts in the model and perform the computation on each expert
708
+ for expert_idx in range(self.num_experts):
709
+ expert_layer = self.experts[expert_idx]
710
+ token_indices = (selected_experts == expert_idx).any(dim=-1).nonzero(as_tuple=True)[0]
711
+
712
+ if token_indices.numel() == 0:
713
+ continue
714
+
715
+ current_state = hidden_states[token_indices]
716
+ current_hidden_states = expert_layer(current_state)
717
+
718
+ # Multiply the output hidden states by `top_routing_weights` on the corresponding tokens
719
+ expert_indices = (selected_experts[token_indices] == expert_idx).nonzero(as_tuple=True)[1]
720
+ current_hidden_states *= top_routing_weights[token_indices, expert_indices, None]
721
+
722
+ final_hidden_states.index_add_(0, token_indices, current_hidden_states)
723
+
724
+ final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
725
+ return final_hidden_states, router_logits
726
+
727
+
728
+ class GemmoeDecoderLayer(nn.Module):
729
+ """
730
+ Decoder layer for the Gemmoe model.
731
+
732
+ Args:
733
+ config (GemmoeConfig): The configuration object for the Gemmoe model.
734
+ layer_idx (int): The index of the layer.
735
+ """
736
+ def __init__(self, config: GemmoeConfig, layer_idx: int):
737
+ super().__init__()
738
+ self.hidden_size = config.hidden_size
739
+ self.self_attn = GEMMOE_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
740
+ self.mlp = GemmoeMLP(config)
741
+ self.block_sparse_moe = GemmoeSparseMoeBlock(config)
742
+ self.input_layernorm = GemmoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
743
+ self.post_attention_layernorm = GemmoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
744
+
745
+ def forward(
746
+ self,
747
+ hidden_states: torch.Tensor,
748
+ attention_mask: Optional[torch.Tensor] = None,
749
+ position_ids: Optional[torch.LongTensor] = None,
750
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
751
+ output_attentions: Optional[bool] = False,
752
+ output_router_logits: Optional[bool] = False,
753
+ use_cache: Optional[bool] = False,
754
+ cache_position: Optional[torch.LongTensor] = None,
755
+ **kwargs,
756
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
757
+ """
758
+ Args:
759
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
760
+ attention_mask (`torch.FloatTensor`, *optional*):
761
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
762
+ query_sequence_length, key_sequence_length)` if default attention is used.
763
+ output_attentions (`bool`, *optional*):
764
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
765
+ returned tensors for more detail.
766
+ use_cache (`bool`, *optional*):
767
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
768
+ (see `past_key_values`).
769
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
770
+ output_router_logits (`bool`, *optional*):
771
+ Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
772
+ should not be returned during inference.
773
+ """
774
+ if "padding_mask" in kwargs:
775
+ warnings.warn(
776
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
777
+ )
778
+
779
+ residual = hidden_states
780
+ hidden_states = self.input_layernorm(hidden_states)
781
+
782
+ # Self Attention
783
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
784
+ hidden_states=hidden_states,
785
+ attention_mask=attention_mask,
786
+ position_ids=position_ids,
787
+ past_key_value=past_key_value,
788
+ output_attentions=output_attentions,
789
+ use_cache=use_cache,
790
+ cache_position=cache_position,
791
+ **kwargs,
792
+ )
793
+ hidden_states = residual + hidden_states
794
+
795
+ # Fully Connected
796
+ residual = hidden_states
797
+ hidden_states = self.post_attention_layernorm(hidden_states)
798
+ hidden_states, router_logits = self.block_sparse_moe(hidden_states)
799
+ hidden_states = residual + hidden_states
800
+
801
+
802
+ outputs = (hidden_states,)
803
+
804
+ if output_attentions:
805
+ outputs += (self_attn_weights,)
806
+
807
+ if use_cache:
808
+ outputs += (present_key_value,)
809
+
810
+ if output_router_logits:
811
+ outputs += (router_logits,)
812
+
813
+ return outputs
814
+
815
+ GEMMOE_START_DOCSTRING = r"""
816
+ This model inherits from [PreTrainedModel]. Check the superclass documentation for the generic methods the
817
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
818
+ etc.)
819
+ """
820
+
821
+ @add_start_docstrings(
822
+ "The bare Gemmoe Model outputting raw hidden-states without any specific head on top.",
823
+ GEMMOE_START_DOCSTRING,
824
+ )
825
+
826
+ class GemmoePreTrainedModel(PreTrainedModel):
827
+ config_class = GemmoeConfig
828
+ base_model_prefix = "model"
829
+ supports_gradient_checkpointing = True
830
+ _keep_in_fp32_modules = ["inv_freq", "rotary_emb", "cos_cached", "sin_cached"]
831
+ _no_split_modules = ["GemmoeDecoderLayer"]
832
+ _skip_keys_device_placement = ["past_key_values", "causal_mask"]
833
+ _supports_flash_attn_2 = True
834
+ _supports_sdpa = True
835
+ _supports_cache_class = True
836
+
837
+ def _init_weights(self, module):
838
+ std = self.config.initializer_range
839
+ if isinstance(module, nn.Linear):
840
+ module.weight.data.normal_(mean=0.0, std=std)
841
+ if module.bias is not None:
842
+ module.bias.data.zero_()
843
+ elif isinstance(module, nn.Embedding):
844
+ module.weight.data.normal_(mean=0.0, std=std)
845
+ if module.padding_idx is not None:
846
+ module.weight.data[module.padding_idx].zero_()
847
+
848
+ def _setup_cache(self, cache_cls, max_batch_size, max_cache_len: Optional[int] = None):
849
+ if self.config._attn_implementation == "flash_attention_2" and cache_cls == StaticCache:
850
+ raise ValueError(
851
+ "`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
852
+ "make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
853
+ )
854
+ if max_cache_len > self.model.causal_mask.shape[-1] or self.device != self.model.causal_mask.device:
855
+ causal_mask = torch.full((max_cache_len, max_cache_len), fill_value=1, device=self.device)
856
+ self.register_buffer("causal_mask", torch.triu(causal_mask, diagonal=1), persistent=False)
857
+
858
+ for layer in self.model.layers:
859
+ weights = layer.self_attn.o_proj.weight
860
+ layer.self_attn.past_key_value = cache_cls(
861
+ self.config, max_batch_size, max_cache_len, device=weights.device, dtype=weights.dtype
862
+ )
863
+
864
+ def _reset_cache(self):
865
+ for layer in self.model.layers:
866
+ layer.self_attn.past_key_value = None
867
+
868
+ GEMMOE_INPUTS_DOCSTRING = r"""
869
+ Args:
870
+ input_ids (torch.LongTensor of shape (batch_size, sequence_length)):
871
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
872
+ it.
873
+ """
874
+
875
+ @add_start_docstrings(
876
+ "The bare Gemmoe Model outputting raw hidden-states without any specific head on top.",
877
+ GEMMOE_START_DOCSTRING,
878
+ )
879
+
880
+ class GemmoeModel(GemmoePreTrainedModel):
881
+ """
882
+ Transformer decoder consisting of config.num_hidden_layers layers. Each layer is a [GemmoeDecoderLayer]Args:
883
+ config: GemmoeConfig
884
+ """
885
+
886
+
887
+ def __init__(self, config: GemmoeConfig):
888
+ super().__init__(config)
889
+ self.padding_idx = config.pad_token_id
890
+ self.vocab_size = config.vocab_size
891
+
892
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
893
+ self.layers = nn.ModuleList(
894
+ [GemmoeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
895
+ )
896
+ self.norm = GemmoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
897
+
898
+ self.gradient_checkpointing = False
899
+
900
+ # Register a causal mask to separate causal and padding mask creation. Merging happens in the attention class.
901
+ # NOTE: This is not friendly with TorchScript, ONNX, ExportedProgram serialization for very large `max_position_embeddings`.
902
+ causal_mask = torch.full(
903
+ (config.max_position_embeddings, config.max_position_embeddings), fill_value=True, dtype=torch.bool
904
+ )
905
+ self.register_buffer("causal_mask", torch.triu(causal_mask, diagonal=1), persistent=False)
906
+
907
+ # Initialize weights and apply final processing
908
+ self.post_init()
909
+
910
+ def get_input_embeddings(self):
911
+ return self.embed_tokens
912
+
913
+ def set_input_embeddings(self, value):
914
+ self.embed_tokens = value
915
+
916
+ @add_start_docstrings_to_model_forward(GEMMOE_INPUTS_DOCSTRING)
917
+ @replace_return_docstrings(output_type=MoeModelOutputWithPast, config_class=_CONFIG_FOR_DOC)
918
+ def forward(
919
+ self,
920
+ input_ids: torch.LongTensor = None,
921
+ attention_mask: Optional[torch.Tensor] = None,
922
+ position_ids: Optional[torch.LongTensor] = None,
923
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
924
+ inputs_embeds: Optional[torch.FloatTensor] = None,
925
+ use_cache: Optional[bool] = None,
926
+ output_attentions: Optional[bool] = None,
927
+ output_hidden_states: Optional[bool] = None,
928
+ output_router_logits: Optional[bool] = None,
929
+ return_dict: Optional[bool] = None,
930
+ cache_position: Optional[torch.LongTensor] = None,
931
+ ) -> Union[Tuple, MoeModelOutputWithPast]:
932
+ """
933
+ Forward pass of the sequence classification model.
934
+
935
+ Args:
936
+ input_ids: Input token IDs.
937
+ attention_mask: Attention mask.
938
+ position_ids: Position IDs.
939
+ past_key_values: Past key-value pairs.
940
+ inputs_embeds: Input embeddings.
941
+ labels: Labels for sequence classification.
942
+ use_cache: Whether to use cache.
943
+ output_attentions: Whether to output attentions.
944
+ output_hidden_states: Whether to output hidden states.
945
+ return_dict: Whether to return a dictionary or tuple.
946
+
947
+ Returns:
948
+ Output of the sequence classification model.
949
+ """
950
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
951
+ output_hidden_states = (
952
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
953
+ )
954
+ output_router_logits = (
955
+ output_router_logits if output_router_logits is not None else self.config.output_router_logits
956
+ )
957
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
958
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
959
+
960
+ if (input_ids is None) ^ (inputs_embeds is not None):
961
+ raise ValueError(
962
+ "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
963
+ )
964
+
965
+ if self.gradient_checkpointing and self.training and use_cache:
966
+ logger.warning_once(
967
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
968
+ )
969
+ use_cache = False
970
+
971
+ if inputs_embeds is None:
972
+ inputs_embeds = self.embed_tokens(input_ids)
973
+
974
+ past_seen_tokens = 0
975
+ if use_cache: # kept for BC (cache positions)
976
+ if not isinstance(past_key_values, StaticCache):
977
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
978
+ past_seen_tokens = past_key_values.get_seq_length()
979
+
980
+ if cache_position is None:
981
+ cache_position = torch.arange(
982
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
983
+ )
984
+
985
+ if position_ids is None:
986
+ position_ids = cache_position.unsqueeze(0)
987
+
988
+ causal_mask = self._update_causal_mask(attention_mask, inputs_embeds)
989
+
990
+ hidden_states = inputs_embeds
991
+
992
+ # Normalize
993
+ scale_factor = torch.tensor(math_sqrt(self.config.hidden_size), dtype=hidden_states.dtype)
994
+ hidden_states = hidden_states * scale_factor
995
+ # Decoder layers
996
+ all_hidden_states = () if output_hidden_states else None
997
+ all_self_attns = () if output_attentions else None
998
+ all_router_logits = () if output_router_logits else None
999
+ next_decoder_cache = None
1000
+
1001
+ for decoder_layer in self.layers:
1002
+ if output_hidden_states:
1003
+ all_hidden_states += (hidden_states,)
1004
+
1005
+ if self.gradient_checkpointing and self.training:
1006
+ layer_outputs = self._gradient_checkpointing_func(
1007
+ decoder_layer.__call__,
1008
+ hidden_states,
1009
+ causal_mask,
1010
+ position_ids,
1011
+ past_key_values,
1012
+ output_attentions,
1013
+ output_router_logits,
1014
+ use_cache,
1015
+ cache_position,
1016
+ )
1017
+ else:
1018
+ layer_outputs = decoder_layer(
1019
+ hidden_states,
1020
+ attention_mask=causal_mask,
1021
+ position_ids=position_ids,
1022
+ past_key_value=past_key_values,
1023
+ output_attentions=output_attentions,
1024
+ output_router_logits=output_router_logits,
1025
+ use_cache=use_cache,
1026
+ cache_position=cache_position,
1027
+ )
1028
+
1029
+ hidden_states = layer_outputs[0]
1030
+ if use_cache:
1031
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1032
+ if output_attentions:
1033
+ all_self_attns += (layer_outputs[1],)
1034
+ if output_router_logits:
1035
+ all_router_logits += (layer_outputs[-1],)
1036
+
1037
+ hidden_states = self.norm(hidden_states)
1038
+
1039
+ # Add hidden states from the last decoder layer
1040
+ if output_hidden_states:
1041
+ all_hidden_states += (hidden_states,)
1042
+
1043
+ next_cache = None
1044
+ if use_cache:
1045
+ next_cache = (
1046
+ next_decoder_cache.to_legacy_cache() if isinstance(next_decoder_cache, Cache) else next_decoder_cache
1047
+ )
1048
+
1049
+ if not return_dict:
1050
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits] if v is not None)
1051
+
1052
+ return MoeModelOutputWithPast(
1053
+ last_hidden_state=hidden_states,
1054
+ past_key_values=next_cache,
1055
+ hidden_states=all_hidden_states,
1056
+ attentions=all_self_attns,
1057
+ router_logits=all_router_logits
1058
+ )
1059
+
1060
+ def _update_causal_mask(self, attention_mask, input_tensor):
1061
+ """
1062
+ Update the causal mask based on the attention mask and input tensor.
1063
+
1064
+ Args:
1065
+ attention_mask (torch.Tensor): The attention mask.
1066
+ input_tensor (torch.Tensor): The input tensor.
1067
+
1068
+ Returns:
1069
+ torch.Tensor: The updated causal mask.
1070
+ """
1071
+
1072
+ if self.config._attn_implementation == "flash_attention_2":
1073
+ if attention_mask is not None and 0.0 in attention_mask:
1074
+ return attention_mask
1075
+ return None
1076
+
1077
+ batch_size, seq_length = input_tensor.shape[:2]
1078
+ dtype = input_tensor.dtype
1079
+ device = input_tensor.device
1080
+
1081
+ # support going beyond cached `max_position_embedding`
1082
+ if seq_length > self.causal_mask.shape[-1]:
1083
+ logger.info(f"Resizing causal mask buffer from {self.causal_mask.shape[-1]} to {2 * self.causal_mask.shape[-1]}")
1084
+ causal_mask = torch.full((2 * self.causal_mask.shape[-1], 2 * self.causal_mask.shape[-1]), fill_value=1)
1085
+ self.register_buffer("causal_mask", torch.triu(causal_mask, diagonal=1), persistent=False)
1086
+
1087
+ # We use the current dtype to avoid any overflows
1088
+ min_dtype = torch.finfo(dtype).min
1089
+ causal_mask = self.causal_mask[None, None, :, :].repeat(batch_size, 1, 1, 1).to(dtype) * min_dtype
1090
+ causal_mask = causal_mask.to(dtype=dtype, device=device)
1091
+
1092
+ if attention_mask is not None and attention_mask.dim() == 2:
1093
+ mask_length = attention_mask.shape[-1]
1094
+ padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0)
1095
+ causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(padding_mask, min_dtype)
1096
+
1097
+ if self.config._attn_implementation == "sdpa" and attention_mask is not None:
1098
+ # TODO: For dynamo, rather use a check on fullgraph=True once this is possible (https://github.com/pytorch/pytorch/pull/120400).
1099
+ is_tracing = (
1100
+ torch.jit.is_tracing()
1101
+ or isinstance(input_tensor, torch.fx.Proxy)
1102
+ or (hasattr(torch, "_dynamo") and torch._dynamo.is_compiling())
1103
+ )
1104
+
1105
+ if not is_tracing and torch.any(attention_mask != 1):
1106
+ # Attend to all tokens in masked rows from the causal_mask, for example the relevant first rows when
1107
+ # using left padding. This is required by
1108
+ # F.scaled_dot_product_attention memory-efficient attention path.
1109
+ # Details: https://github.com/pytorch/pytorch/issues/110213
1110
+ causal_mask = causal_mask.mul(~torch.all(causal_mask == min_dtype, dim=-1, keepdim=True)).to(dtype)
1111
+
1112
+ return causal_mask
1113
+
1114
+ class GemmoeForCausalLM(GemmoePreTrainedModel):
1115
+ r"""
1116
+ The Gemmoe Model transformer with a language modeling head on top for causal language modeling (CLM).
1117
+
1118
+ Args:
1119
+ config (GemmoeConfig): The configuration object for the Gemmoe model.
1120
+
1121
+ Example usage:
1122
+ ```python
1123
+ >>> from transformers import AutoTokenizer, GemmoeForCausalLM
1124
+
1125
+ >>> model = GemmoeForCausalLM.from_pretrained("google/gemmoe-7b")
1126
+ >>> tokenizer = AutoTokenizer.from_pretrained("google/gemmoe-7b")
1127
+
1128
+ >>> prompt = "What is your favorite condiment?"
1129
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1130
+
1131
+ >>> # Generate
1132
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1133
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1134
+ "What is your favorite condiment?"
1135
+ ```
1136
+ """
1137
+ _tied_weights_keys = ["lm_head.weight"]
1138
+
1139
+ def __init__(self, config):
1140
+ super().__init__(config)
1141
+ self.model = GemmoeModel(config)
1142
+ self.vocab_size = config.vocab_size
1143
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1144
+ self.router_aux_loss_coef = config.router_aux_loss_coef
1145
+ self.num_experts = 8
1146
+ self.num_experts_per_tok = config.num_experts_per_tok
1147
+
1148
+ # Initialize weights and apply final processing
1149
+ self.post_init()
1150
+
1151
+ def get_input_embeddings(self):
1152
+ return self.model.embed_tokens
1153
+
1154
+ def set_input_embeddings(self, value):
1155
+ self.model.embed_tokens = value
1156
+
1157
+ def get_output_embeddings(self):
1158
+ return self.lm_head
1159
+
1160
+ def set_output_embeddings(self, new_embeddings):
1161
+ self.lm_head = new_embeddings
1162
+
1163
+ def set_decoder(self, decoder):
1164
+ self.model = decoder
1165
+
1166
+ def get_decoder(self):
1167
+ return self.model
1168
+
1169
+ @add_start_docstrings_to_model_forward(GEMMOE_INPUTS_DOCSTRING)
1170
+ @replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1171
+ def forward(
1172
+ self,
1173
+ input_ids: torch.LongTensor = None,
1174
+ attention_mask: Optional[torch.Tensor] = None,
1175
+ position_ids: Optional[torch.LongTensor] = None,
1176
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1177
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1178
+ labels: Optional[torch.LongTensor] = None,
1179
+ use_cache: Optional[bool] = None,
1180
+ output_attentions: Optional[bool] = None,
1181
+ output_hidden_states: Optional[bool] = None,
1182
+ output_router_logits: Optional[bool] = None,
1183
+ return_dict: Optional[bool] = None,
1184
+ cache_position: Optional[torch.LongTensor] = None,
1185
+ ) -> Union[Tuple, MoeCausalLMOutputWithPast]:
1186
+ r"""
1187
+ Args:
1188
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1189
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1190
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1191
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1192
+
1193
+ Returns:
1194
+
1195
+ Example:
1196
+
1197
+ ```python
1198
+ >>> from transformers import AutoTokenizer, GemmoeForCausalLM
1199
+
1200
+ >>> model = GemmoeForCausalLM.from_pretrained("google/gemmoe-7b")
1201
+ >>> tokenizer = AutoTokenizer.from_pretrained("google/gemmoe-7b")
1202
+
1203
+ >>> prompt = "What is your favorite condiment?"
1204
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1205
+
1206
+ >>> # Generate
1207
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1208
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1209
+ "What is your favorite condiment?"
1210
+ ```"""
1211
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1212
+ output_router_logits = (
1213
+ output_router_logits if output_router_logits is not None else getattr(self.config, "output_router_logits", False)
1214
+ )
1215
+ output_hidden_states = (
1216
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1217
+ )
1218
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1219
+
1220
+ outputs = self.model(
1221
+ input_ids=input_ids,
1222
+ attention_mask=attention_mask,
1223
+ position_ids=position_ids,
1224
+ past_key_values=past_key_values,
1225
+ inputs_embeds=inputs_embeds,
1226
+ use_cache=use_cache,
1227
+ output_attentions=output_attentions,
1228
+ output_hidden_states=output_hidden_states,
1229
+ output_router_logits=output_router_logits,
1230
+ return_dict=return_dict,
1231
+ cache_position=cache_position,
1232
+ )
1233
+
1234
+ hidden_states = outputs[0]
1235
+ logits = self.lm_head(hidden_states)
1236
+ logits = logits.float()
1237
+
1238
+ loss = None
1239
+ if labels is not None:
1240
+ shift_logits = logits[..., :-1, :].contiguous()
1241
+ shift_labels = labels[..., 1:].contiguous()
1242
+ loss_fct = CrossEntropyLoss()
1243
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1244
+ shift_labels = shift_labels.view(-1)
1245
+ shift_labels = shift_labels.to(shift_logits.device)
1246
+ loss = loss_fct(shift_logits, shift_labels)
1247
+
1248
+ aux_loss = None
1249
+ if output_router_logits:
1250
+ router_logits = outputs.router_logits if return_dict else outputs[-1]
1251
+ if router_logits is not None:
1252
+ aux_loss = load_balancing_loss_func(
1253
+ router_logits,
1254
+ self.num_experts,
1255
+ self.num_experts_per_tok,
1256
+ attention_mask,
1257
+ )
1258
+ if labels is not None:
1259
+ loss += self.router_aux_loss_coef * aux_loss.to(loss.device)
1260
+
1261
+ if not return_dict:
1262
+ output = (logits,) + outputs[1:]
1263
+ if aux_loss is not None:
1264
+ output = (aux_loss,) + output
1265
+ return (loss,) + output if loss is not None else output
1266
+
1267
+ return MoeCausalLMOutputWithPast(
1268
+ loss=loss,
1269
+ aux_loss=aux_loss,
1270
+ logits=logits,
1271
+ past_key_values=outputs.past_key_values,
1272
+ hidden_states=outputs.hidden_states,
1273
+ attentions=outputs.attentions,
1274
+ router_logits=outputs.router_logits,
1275
+ )
1276
+
1277
+ def prepare_inputs_for_generation(
1278
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1279
+ ):
1280
+ past_length = 0
1281
+ if past_key_values is not None:
1282
+ if isinstance(past_key_values, Cache):
1283
+ cache_length = past_key_values.get_seq_length()
1284
+ past_length = past_key_values.seen_tokens
1285
+ max_cache_length = past_key_values.get_max_length()
1286
+ else:
1287
+ cache_length = past_length = past_key_values[0][0].shape[2]
1288
+ max_cache_length = None
1289
+
1290
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
1291
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1292
+ elif past_length < input_ids.shape[1]:
1293
+ input_ids = input_ids[:, past_length:]
1294
+
1295
+ if (
1296
+ max_cache_length is not None
1297
+ and attention_mask is not None
1298
+ and cache_length + input_ids.shape[1] > max_cache_length
1299
+ ):
1300
+ attention_mask = attention_mask[:, -max_cache_length:]
1301
+
1302
+ position_ids = kwargs.get("position_ids", None)
1303
+ if attention_mask is not None and position_ids is None:
1304
+ position_ids = attention_mask.long().cumsum(-1) - 1
1305
+ position_ids.masked_fill_(attention_mask == 0, 1)
1306
+ if past_key_values:
1307
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1308
+
1309
+ if self.generation_config.cache_implementation == "static":
1310
+ cache_position = kwargs.get("cache_position", None)
1311
+ if cache_position is None:
1312
+ past_length = 0
1313
+ else:
1314
+ past_length = cache_position[-1] + 1
1315
+ input_ids = input_ids[:, past_length:]
1316
+ position_ids = position_ids[:, past_length:]
1317
+
1318
+ cache_position = torch.arange(past_length, past_length + position_ids.shape[-1], device=position_ids.device)
1319
+
1320
+ if inputs_embeds is not None and past_key_values is None:
1321
+ model_inputs = {"inputs_embeds": inputs_embeds}
1322
+ else:
1323
+ model_inputs = {"input_ids": input_ids.contiguous()}
1324
+
1325
+ model_inputs.update(
1326
+ {
1327
+ "position_ids": position_ids.contiguous(),
1328
+ "cache_position": cache_position,
1329
+ "past_key_values": past_key_values,
1330
+ "use_cache": kwargs.get("use_cache"),
1331
+ "attention_mask": attention_mask,
1332
+ }
1333
+ )
1334
+
1335
+ return model_inputs
1336
+
1337
+ @staticmethod
1338
+ def _reorder_cache(past_key_values, beam_idx):
1339
+ reordered_past = ()
1340
+ for layer_past in past_key_values:
1341
+ reordered_past += (
1342
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1343
+ )
1344
+ return reordered_past
1345
+ @add_start_docstrings(
1346
+ """
1347
+ The Gemmoe Model transformer with a sequence classification head on top (linear layer).
1348
+ [`GemmoeForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1349
+ (e.g. GPT-2) do.
1350
+
1351
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1352
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1353
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1354
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1355
+ each row of the batch).
1356
+ """,
1357
+ GEMMOE_START_DOCSTRING,
1358
+ )
1359
+
1360
+ class GemmoeForSequenceClassification(GemmoePreTrainedModel):
1361
+ def __init__(self, config):
1362
+ super().__init__(config)
1363
+ self.num_labels = config.num_labels
1364
+ self.model = GemmoeModel(config)
1365
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1366
+ # Initialize weights and apply final processing
1367
+ self.post_init()
1368
+
1369
+ def get_input_embeddings(self):
1370
+ return self.model.embed_tokens
1371
+
1372
+ def set_input_embeddings(self, value):
1373
+ self.model.embed_tokens = value
1374
+
1375
+ @add_start_docstrings_to_model_forward(GEMMOE_INPUTS_DOCSTRING)
1376
+ @replace_return_docstrings(output_type=SequenceClassifierOutputWithPast, config_class=_CONFIG_FOR_DOC)
1377
+ def forward(
1378
+ self,
1379
+ input_ids: torch.LongTensor = None,
1380
+ attention_mask: Optional[torch.Tensor] = None,
1381
+ position_ids: Optional[torch.LongTensor] = None,
1382
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1383
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1384
+ labels: Optional[torch.LongTensor] = None,
1385
+ use_cache: Optional[bool] = None,
1386
+ output_attentions: Optional[bool] = None,
1387
+ output_hidden_states: Optional[bool] = None,
1388
+ return_dict: Optional[bool] = None,
1389
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1390
+ """
1391
+ Forward pass of the sequence classification model.
1392
+
1393
+ Args:
1394
+ input_ids (torch.LongTensor, optional): Input token IDs.
1395
+ attention_mask (torch.Tensor, optional): Attention mask.
1396
+ position_ids (torch.LongTensor, optional): Position IDs.
1397
+ past_key_values (List[torch.FloatTensor], optional): Past key-value pairs.
1398
+ inputs_embeds (torch.FloatTensor, optional): Input embeddings.
1399
+ labels (torch.LongTensor, optional): Labels for sequence classification.
1400
+ use_cache (bool, optional): Whether to use cache.
1401
+ output_attentions (bool, optional): Whether to output attentions.
1402
+ output_hidden_states (bool, optional): Whether to output hidden states.
1403
+ return_dict (bool, optional): Whether to return a dictionary or tuple.
1404
+
1405
+ Returns:
1406
+ Union[Tuple, SequenceClassifierOutputWithPast]: Output of the sequence classification model.
1407
+ """
1408
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1409
+ transformer_outputs = self.model(
1410
+ input_ids,
1411
+ attention_mask=attention_mask,
1412
+ position_ids=position_ids,
1413
+ past_key_values=past_key_values,
1414
+ inputs_embeds=inputs_embeds,
1415
+ use_cache=use_cache,
1416
+ output_attentions=output_attentions,
1417
+ output_hidden_states=output_hidden_states,
1418
+ return_dict=return_dict,
1419
+ )
1420
+ hidden_states = transformer_outputs[0]
1421
+ logits = self.score(hidden_states)
1422
+
1423
+ if input_ids is not None:
1424
+ batch_size = input_ids.shape[0]
1425
+ else:
1426
+ batch_size = inputs_embeds.shape[0]
1427
+
1428
+ if self.config.pad_token_id is None and batch_size != 1:
1429
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1430
+ if self.config.pad_token_id is None:
1431
+ sequence_lengths = -1
1432
+ else:
1433
+ if input_ids is not None:
1434
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1435
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1436
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1437
+ sequence_lengths = sequence_lengths.to(logits.device)
1438
+ else:
1439
+ sequence_lengths = -1
1440
+
1441
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1442
+
1443
+ loss = None
1444
+ if labels is not None:
1445
+ labels = labels.to(logits.device)
1446
+ if self.config.problem_type is None:
1447
+ if self.num_labels == 1:
1448
+ self.config.problem_type = "regression"
1449
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1450
+ self.config.problem_type = "single_label_classification"
1451
+ else:
1452
+ self.config.problem_type = "multi_label_classification"
1453
+
1454
+ if self.config.problem_type == "regression":
1455
+ loss_fct = MSELoss()
1456
+ if self.num_labels == 1:
1457
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1458
+ else:
1459
+ loss = loss_fct(pooled_logits, labels)
1460
+ elif self.config.problem_type == "single_label_classification":
1461
+ loss_fct = CrossEntropyLoss()
1462
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1463
+ elif self.config.problem_type == "multi_label_classification":
1464
+ loss_fct = BCEWithLogitsLoss()
1465
+ loss = loss_fct(pooled_logits, labels)
1466
+
1467
+ if not return_dict:
1468
+ output = (pooled_logits,) + transformer_outputs[1:]
1469
+ return ((loss,) + output) if loss is not None else output
1470
+
1471
+ return SequenceClassifierOutputWithPast(
1472
+ loss=loss,
1473
+ logits=pooled_logits,
1474
+ past_key_values=transformer_outputs.past_key_values,
1475
+ hidden_states=transformer_outputs.hidden_states,
1476
+ attentions=transformer_outputs.attentions,
1477
+ )
tokenization_gemmoe.py ADDED
@@ -0,0 +1,311 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Tokenization classes for Gemmoe."""
16
+ import os
17
+ from shutil import copyfile
18
+ from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
19
+
20
+ import sentencepiece as spm
21
+
22
+ from ...tokenization_utils import AddedToken, PreTrainedTokenizer
23
+ from ...utils import logging
24
+
25
+ if TYPE_CHECKING:
26
+ pass
27
+
28
+ logger = logging.get_logger(__name__)
29
+
30
+ VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
31
+
32
+ SPIECE_UNDERLINE = "▁"
33
+
34
+ class GemmoeTokenizer(PreTrainedTokenizer):
35
+ """
36
+ Construct a Gemmoe tokenizer. Based on byte-level Byte-Pair-Encoding. The default padding token is unset as there is
37
+ no padding token in the original model.
38
+
39
+ Args:
40
+ vocab_file (`str`):
41
+ Path to the vocabulary file.
42
+ unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<unk>"`):
43
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
44
+ token instead.
45
+ bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<bos>"`):
46
+ The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
47
+ eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<eos>"`):
48
+ The end of sequence token.
49
+ pad_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<pad>"`):
50
+ A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by
51
+ attention mechanisms or loss computation.
52
+ sp_model_kwargs (`Dict[str, Any]`, `Optional`, *optional*):
53
+ Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
54
+ SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
55
+ to set:
56
+ - `enable_sampling`: Enable subword regularization.
57
+ - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
58
+ - `nbest_size = {0,1}`: No sampling is performed.
59
+ - `nbest_size > 1`: samples from the nbest_size results.
60
+ - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
61
+ using forward-filtering-and-backward-sampling algorithm.
62
+ - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
63
+ BPE-dropout.
64
+ add_bos_token (`bool`, *optional*, defaults to `True`):
65
+ Whether or not to add an `bos_token` at the start of sequences.
66
+ add_eos_token (`bool`, *optional*, defaults to `False`):
67
+ Whether or not to add an `eos_token` at the end of sequences.
68
+ clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
69
+ Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like
70
+ extra spaces.
71
+ use_default_system_prompt (`bool`, *optional*, defaults to `False`):
72
+ Whether or not the default system prompt for Gemmoe should be used.
73
+ spaces_between_special_tokens (`bool`, *optional*, defaults to `False`):
74
+ Whether or not to add spaces between special tokens.
75
+ """
76
+
77
+ vocab_files_names = VOCAB_FILES_NAMES
78
+ model_input_names = ["input_ids", "attention_mask"]
79
+
80
+ def __init__(
81
+ self,
82
+ vocab_file,
83
+ unk_token="<unk>",
84
+ bos_token="<bos>",
85
+ eos_token="<eos>",
86
+ pad_token="<pad>",
87
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
88
+ add_bos_token=True,
89
+ add_eos_token=False,
90
+ clean_up_tokenization_spaces=False,
91
+ use_default_system_prompt=False,
92
+ spaces_between_special_tokens=False,
93
+ **kwargs,
94
+ ):
95
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
96
+ bos_token = AddedToken(bos_token, normalized=False, special=True) if isinstance(bos_token, str) else bos_token
97
+ eos_token = AddedToken(eos_token, normalized=False, special=True) if isinstance(eos_token, str) else eos_token
98
+ unk_token = AddedToken(unk_token, normalized=False, special=True) if isinstance(unk_token, str) else unk_token
99
+ pad_token = AddedToken(pad_token, normalized=False, special=True) if isinstance(pad_token, str) else pad_token
100
+
101
+ self.vocab_file = vocab_file
102
+ self.add_bos_token = add_bos_token
103
+ self.add_eos_token = add_eos_token
104
+ self.use_default_system_prompt = use_default_system_prompt
105
+
106
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
107
+ self.sp_model.Load(vocab_file)
108
+
109
+ super().__init__(
110
+ bos_token=bos_token,
111
+ eos_token=eos_token,
112
+ unk_token=unk_token,
113
+ pad_token=pad_token,
114
+ add_bos_token=add_bos_token,
115
+ add_eos_token=add_eos_token,
116
+ sp_model_kwargs=self.sp_model_kwargs,
117
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
118
+ use_default_system_prompt=use_default_system_prompt,
119
+ spaces_between_special_tokens=spaces_between_special_tokens,
120
+ **kwargs,
121
+ )
122
+
123
+ def __getstate__(self):
124
+ state = self.__dict__.copy()
125
+ state["sp_model"] = None
126
+ state["sp_model_proto"] = self.sp_model.serialized_model_proto()
127
+ return state
128
+
129
+ def __setstate__(self, d):
130
+ self.__dict__ = d
131
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
132
+ self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
133
+
134
+ @property
135
+ def vocab_size(self):
136
+ """Returns vocab size"""
137
+ return self.sp_model.get_piece_size()
138
+
139
+ def get_vocab(self):
140
+ """Returns vocab as a dict"""
141
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
142
+ vocab.update(self.added_tokens_encoder)
143
+ return vocab
144
+
145
+ def _tokenize(self, text, **kwargs):
146
+ """
147
+ Returns a tokenized string. The Gemmoe tokenizer never adds a prefix space.
148
+ """
149
+ return self.sp_model.encode(text, out_type=str)
150
+
151
+ def _convert_token_to_id(self, token):
152
+ """Converts a token (str) in an id using the vocab."""
153
+ return self.sp_model.piece_to_id(token)
154
+
155
+ def _convert_id_to_token(self, index):
156
+ """Converts an index (integer) in a token (str) using the vocab."""
157
+ token = self.sp_model.IdToPiece(index)
158
+ return token
159
+
160
+ def _decode(
161
+ self,
162
+ token_ids: List[int],
163
+ skip_special_tokens: bool = False,
164
+ spaces_between_special_tokens: bool = False,
165
+ **kwargs,
166
+ ) -> str:
167
+ sub_texts = []
168
+ current_sub_text = []
169
+ for ids in token_ids:
170
+ if skip_special_tokens and ids in self.all_special_ids:
171
+ continue
172
+ if ids in self._added_tokens_decoder:
173
+ if current_sub_text:
174
+ sub_texts.append(self.sp_model.decode(current_sub_text))
175
+ sub_texts.append(self._added_tokens_decoder[ids].content)
176
+ current_sub_text = []
177
+ else:
178
+ current_sub_text.append(ids)
179
+ if current_sub_text:
180
+ sub_texts.append(self.sp_model.decode(current_sub_text))
181
+ if spaces_between_special_tokens:
182
+ sub_texts = " ".join(sub_texts)
183
+ else:
184
+ sub_texts = "".join(sub_texts)
185
+ return sub_texts
186
+
187
+ def convert_tokens_to_string(self, tokens):
188
+ """Converts a sequence of tokens (string) in a single string."""
189
+ current_sub_tokens = []
190
+ out_string = ""
191
+ for token in tokens:
192
+ # make sure that special tokens are not decoded using sentencepiece model
193
+ if token in self._added_tokens_encoder:
194
+ out_string += self.sp_model.decode(current_sub_tokens) + token
195
+ current_sub_tokens = []
196
+ else:
197
+ current_sub_tokens.append(token)
198
+ out_string += self.sp_model.decode(current_sub_tokens)
199
+ return out_string
200
+
201
+ def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
202
+ """
203
+ Save the vocabulary and special tokens file to a directory.
204
+
205
+ Args:
206
+ save_directory (`str`):
207
+ The directory in which to save the vocabulary.
208
+
209
+ Returns:
210
+ `Tuple(str)`: Paths to the files saved.
211
+ """
212
+ if not os.path.isdir(save_directory):
213
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
214
+ return
215
+ out_vocab_file = os.path.join(
216
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
217
+ )
218
+
219
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
220
+ copyfile(self.vocab_file, out_vocab_file)
221
+ elif not os.path.isfile(self.vocab_file):
222
+ with open(out_vocab_file, "wb") as fi:
223
+ content_spiece_model = self.sp_model.serialized_model_proto()
224
+ fi.write(content_spiece_model)
225
+
226
+ return (out_vocab_file,)
227
+
228
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
229
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
230
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
231
+ output = bos_token_id + token_ids_0 + eos_token_id
232
+ if token_ids_1 is not None:
233
+ output = output + bos_token_id + token_ids_1 + eos_token_id
234
+ return output
235
+
236
+ def get_special_tokens_mask(
237
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
238
+ ) -> List[int]:
239
+ """
240
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
241
+ special tokens using the tokenizer `prepare_for_model` method.
242
+
243
+ Args:
244
+ token_ids_0 (`List[int]`):
245
+ List of IDs.
246
+ token_ids_1 (`List[int]`, *optional*):
247
+ Optional second list of IDs for sequence pairs.
248
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
249
+ Whether or not the token list is already formatted with special tokens for the model.
250
+
251
+ Returns:
252
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
253
+ """
254
+ if already_has_special_tokens:
255
+ return super().get_special_tokens_mask(
256
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
257
+ )
258
+
259
+ bos_token_id = [1] if self.add_bos_token else []
260
+ eos_token_id = [1] if self.add_eos_token else []
261
+
262
+ if token_ids_1 is None:
263
+ return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
264
+ return (
265
+ bos_token_id
266
+ + ([0] * len(token_ids_0))
267
+ + eos_token_id
268
+ + bos_token_id
269
+ + ([0] * len(token_ids_1))
270
+ + eos_token_id
271
+ )
272
+
273
+ def create_token_type_ids_from_sequences(
274
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
275
+ ) -> List[int]:
276
+ """
277
+ Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
278
+ sequence pair mask has the following format:
279
+
280
+ ```
281
+ 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
282
+ | first sequence | second sequence |
283
+ ```
284
+
285
+ if token_ids_1 is None, only returns the first portion of the mask (0s).
286
+
287
+ Args:
288
+ token_ids_0 (`List[int]`):
289
+ List of ids.
290
+ token_ids_1 (`List[int]`, *optional*):
291
+ Optional second list of IDs for sequence pairs.
292
+
293
+ Returns:
294
+ `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
295
+ """
296
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
297
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
298
+ output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
299
+ if token_ids_1 is not None:
300
+ output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
301
+ return output
302
+
303
+ def _build_conversation_input_ids(self, conversation: List[List[int]]) -> List[int]:
304
+ input_ids = []
305
+ for i, history in enumerate(conversation):
306
+ if i % 2 == 0:
307
+ input_ids.extend([self.bos_token_id, self.convert_tokens_to_ids("<start_of_turn>")] + history + [self.convert_tokens_to_ids("<end_of_turn>")])
308
+ else:
309
+ input_ids.extend([self.bos_token_id, self.convert_tokens_to_ids("<start_of_turn>"), self.convert_tokens_to_ids("model")] + history + [self.convert_tokens_to_ids("<end_of_turn>\n")])
310
+ input_ids.append(self.eos_token_id)
311
+ return input_ids