--- tags: - merge - mergekit - lazymergekit - mlabonne/AlphaMonarch-7B - mlabonne/NeuralMonarch-7B - Kukedlc/NeuralMaxime-7B-slerp - eren23/dpo-binarized-NeuralTrix-7B base_model: - mlabonne/AlphaMonarch-7B - mlabonne/NeuralMonarch-7B - Kukedlc/NeuralMaxime-7B-slerp - eren23/dpo-binarized-NeuralTrix-7B --- # NeMoTrix-v2 NeMoTrix-v2 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [mlabonne/AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B) * [mlabonne/NeuralMonarch-7B](https://huggingface.co/mlabonne/NeuralMonarch-7B) * [Kukedlc/NeuralMaxime-7B-slerp](https://huggingface.co/Kukedlc/NeuralMaxime-7B-slerp) * [eren23/dpo-binarized-NeuralTrix-7B](https://huggingface.co/eren23/dpo-binarized-NeuralTrix-7B) ## 🧩 Configuration ```yaml models: - model: CultriX/MonaTrix-v4 # No parameters necessary for base model, chosen for its strong performance and presence in high-scoring configurations - model: mlabonne/AlphaMonarch-7B parameters: density: 0.65 weight: 0.4 - model: mlabonne/NeuralMonarch-7B parameters: density: 0.65 weight: 0.35 - model: Kukedlc/NeuralMaxime-7B-slerp parameters: density: 0.6 weight: 0.35 - model: eren23/dpo-binarized-NeuralTrix-7B parameters: density: 0.55 weight: 0.25 merge_method: dare_ties base_model: CultriX/MonaTrix-v4 parameters: int8_mask: true dtype: bfloat16 random_seed: 0 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "CultriX/NeMoTrix-v2" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```