|
import os, math, time, datetime, subprocess |
|
import torch |
|
from torch.utils.data import DataLoader |
|
import pytorch_lightning as pl |
|
from pytorch_lightning.utilities import rank_zero_info, rank_zero_only |
|
|
|
def my_save(dd, ff): |
|
if '14b-run1' not in ff: |
|
torch.save(dd, ff) |
|
else: |
|
fn = ff.split('/')[-1] |
|
fff = '/dev/shm/' + fn |
|
torch.save(dd, fff) |
|
subprocess.Popen(f" aws s3 mv {fff} s3://rwkv-14b-4k/{fn} --quiet", shell=True) |
|
|
|
class train_callback(pl.Callback): |
|
def __init__(self, args): |
|
super().__init__() |
|
self.args = args |
|
|
|
def on_train_batch_start(self, trainer, pl_module, batch, batch_idx): |
|
args = self.args |
|
|
|
|
|
real_step = trainer.global_step + args.epoch_begin * args.epoch_steps |
|
|
|
|
|
w_step = args.warmup_steps |
|
if args.lr_final == args.lr_init or args.epoch_count == 0: |
|
lr = args.lr_init |
|
if trainer.global_step < w_step: |
|
lr = lr * (0.2 + 0.8 * trainer.global_step / w_step) |
|
else: |
|
decay_step = real_step - args.my_pile_edecay * args.epoch_steps |
|
decay_total = (args.epoch_count - args.my_pile_edecay) * args.epoch_steps |
|
progress = (decay_step - w_step + 1) / (decay_total - w_step) |
|
progress = min(1, max(0, progress)) |
|
|
|
if args.lr_final == 0 or args.lr_init == 0: |
|
lr = args.lr_init + (args.lr_final - args.lr_init) * progress |
|
else: |
|
lr = args.lr_init * math.exp(math.log(args.lr_final / args.lr_init) * pow(progress, 1)) |
|
|
|
if trainer.global_step < w_step: |
|
lr = lr * (0.2 + 0.8 * trainer.global_step / w_step) |
|
|
|
|
|
|
|
for param_group in trainer.optimizers[0].param_groups: |
|
if args.layerwise_lr > 0: |
|
param_group["lr"] = lr * param_group["my_lr_scale"] |
|
|
|
else: |
|
param_group["lr"] = lr |
|
|
|
trainer.my_lr = lr |
|
|
|
|
|
if trainer.global_step == 0: |
|
if trainer.is_global_zero: |
|
trainer.my_loss_sum = 0 |
|
trainer.my_loss_count = 0 |
|
trainer.my_log = open(args.proj_dir + "/train_log.txt", "a") |
|
trainer.my_log.write(f"NEW RUN {args.my_timestamp}\n{vars(self.args)}\n") |
|
try: |
|
print(f"\n{trainer.strategy.config}\n") |
|
trainer.my_log.write(f"{trainer.strategy.config}\n") |
|
except: |
|
pass |
|
trainer.my_log.flush() |
|
if len(args.wandb) > 0: |
|
print("Login to wandb...") |
|
import wandb |
|
wandb.init( |
|
project=args.wandb, |
|
name=args.run_name + " " + args.my_timestamp, |
|
config=args, |
|
save_code=False, |
|
) |
|
trainer.my_wandb = wandb |
|
|
|
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx): |
|
args = self.args |
|
if trainer.is_global_zero: |
|
t_now = time.time_ns() |
|
token_per_step = args.ctx_len * args.real_bsz |
|
real_step = trainer.global_step + args.epoch_begin * args.epoch_steps |
|
kt_s = 0 |
|
try: |
|
t_cost = (t_now - trainer.my_time_ns) / 1e9 |
|
kt_s = token_per_step / t_cost / 1000 |
|
self.log("REAL it/s", 1.0 / t_cost, prog_bar=True, on_step=True) |
|
self.log("Kt/s", kt_s, prog_bar=True, on_step=True) |
|
except: |
|
pass |
|
trainer.my_time_ns = t_now |
|
trainer.my_loss = trainer.my_loss_all.float().mean().item() |
|
trainer.my_loss_sum += trainer.my_loss |
|
trainer.my_loss_count += 1 |
|
trainer.my_epoch_loss = trainer.my_loss_sum / trainer.my_loss_count |
|
self.log("lr", trainer.my_lr, prog_bar=True, on_step=True) |
|
self.log("loss", trainer.my_epoch_loss, prog_bar=True, on_step=True) |
|
|
|
|
|
if len(args.wandb) > 0: |
|
lll = {"loss": trainer.my_loss, "lr": trainer.my_lr, "Gtokens": real_step * token_per_step / 1e9} |
|
if kt_s > 0: |
|
lll["kt/s"] = kt_s |
|
trainer.my_wandb.log(lll, step=int(real_step)) |
|
if args.magic_prime > 0: |
|
expand_factor = 2 if args.my_qa_mask > 0 else 1 |
|
if int(real_step) == int(args.magic_prime * expand_factor // args.real_bsz) - 1 + int(args.my_random_steps): |
|
to_save_dict = pl_module.state_dict() |
|
my_save( |
|
to_save_dict, |
|
f"{args.proj_dir}/rwkv-final.pth", |
|
) |
|
|
|
|
|
def on_train_epoch_start(self, trainer, pl_module): |
|
args = self.args |
|
dataset = trainer.train_dataloader.dataset.datasets |
|
assert "MyDataset" in str(dataset) |
|
dataset.global_rank = trainer.global_rank |
|
dataset.real_epoch = int(args.epoch_begin + trainer.current_epoch) |
|
dataset.world_size = trainer.world_size |
|
|
|
|
|
def on_train_epoch_end(self, trainer, pl_module): |
|
args = self.args |
|
if trainer.is_global_zero: |
|
if (args.epoch_save > 0 and trainer.current_epoch % args.epoch_save == 0) or trainer.current_epoch == args.epoch_count - 1: |
|
if args.data_type == 'wds_img': |
|
raw_dict = pl_module.state_dict() |
|
to_save_dict = {} |
|
for k in raw_dict: |
|
if k.startswith('encoder.') or k.startswith('decoder.'): |
|
to_save_dict[k] = raw_dict[k] |
|
else: |
|
to_save_dict = pl_module.state_dict() |
|
try: |
|
my_save( |
|
to_save_dict, |
|
f"{args.proj_dir}/rwkv-{args.epoch_begin + trainer.current_epoch}.pth", |
|
) |
|
except Exception as e: |
|
print('Error\n\n', e, '\n\n') |
|
trainer.my_log.write(f"{args.epoch_begin + trainer.current_epoch} {trainer.my_epoch_loss:.6f} {math.exp(trainer.my_epoch_loss):.4f} {trainer.my_lr:.8f} {datetime.datetime.now()} {trainer.current_epoch}\n") |
|
trainer.my_log.flush() |
|
|
|
trainer.my_loss_sum = 0 |
|
trainer.my_loss_count = 0 |
|
|
|
|
|
@rank_zero_only |
|
def generate_init_weight(model, init_weight_name): |
|
mm = model.generate_init_weight() |
|
|
|
if model.args.my_pile_stage == 1: |
|
if len(model.args.load_model) > 0: |
|
print(f"Combine weights from {model.args.load_model}...") |
|
load_dict = torch.load(model.args.load_model, map_location="cpu") |
|
for k in load_dict: |
|
assert k in mm |
|
src = load_dict[k] |
|
try: |
|
mm[k] = src.reshape(mm[k].shape) |
|
except: |
|
tmp = mm[k].squeeze().clone() |
|
print(k, src.shape, '-->', mm[k].shape) |
|
ss = src.shape[0] |
|
dd = tmp.shape[0] |
|
for i in range(dd): |
|
pos = i / dd * ss |
|
if pos >= ss - 1: |
|
tmp[i] = src[ss-1] |
|
else: |
|
p0 = int(math.floor(pos)) |
|
ii = pos - p0 |
|
tmp[i] = src[p0] * (1-ii) + src[p0+1] * (ii) |
|
mm[k] = tmp.reshape(mm[k].shape) |
|
sss = src.squeeze().float().cpu().numpy() |
|
print(sss[:10], '...', sss[-10:]) |
|
mmm = mm[k].squeeze().float().cpu().numpy() |
|
print(mmm[:10], '...', mmm[-10:]) |
|
|
|
print(f"Save to {init_weight_name}...") |
|
torch.save(mm, init_weight_name) |
|
|
|
if model.args.my_pile_stage == 1: |
|
print("Done. Now go for stage 2.") |
|
exit(0) |
|
|