|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" LLaMA model configuration""" |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
from transformers import LlamaConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = {} |
|
|
|
|
|
class CLEXLlamaConfig(LlamaConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA |
|
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the |
|
defaults will yield a similar configuration to that of the LLaMA-7B. |
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 32000): |
|
Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`LlamaModel`] |
|
hidden_size (`int`, *optional*, defaults to 4096): |
|
Dimension of the hidden representations. |
|
intermediate_size (`int`, *optional*, defaults to 11008): |
|
Dimension of the MLP representations. |
|
num_hidden_layers (`int`, *optional*, defaults to 32): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 32): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
num_key_value_heads (`int`, *optional*): |
|
This is the number of key_value heads that should be used to implement Grouped Query Attention. If |
|
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if |
|
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When |
|
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed |
|
by meanpooling all the original heads within that group. For more details checkout [this |
|
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to |
|
`num_attention_heads`. |
|
pretraining_tp (`int`, *optional*, defaults to `1`): |
|
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this |
|
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is |
|
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this |
|
issue](https://github.com/pytorch/pytorch/issues/76232). |
|
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): |
|
The non-linear activation function (function or string) in the decoder. |
|
max_position_embeddings (`int`, *optional*, defaults to 2048): |
|
The maximum sequence length that this model might ever be used with. Typically set this to something large |
|
just in case (e.g., 512 or 1024 or 2048). |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
rms_norm_eps (`float`, *optional*, defaults to 1e-12): |
|
The epsilon used by the rms normalization layers. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). Only |
|
relevant if `config.is_decoder=True`. |
|
tie_word_embeddings(`bool`, *optional*, defaults to `False`): |
|
Whether to tie weight embeddings |
|
rope_scaling (`Dict`, *optional*): |
|
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports three scaling |
|
strategies: linear and dynamic. Their scaling factor must be an float greater than 1. The expected format |
|
is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update |
|
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how |
|
these scaling strategies behave: |
|
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an |
|
experimental feature, subject to breaking API changes in future versions. |
|
Example: |
|
```python |
|
>>> from transformers import LlamaModel, LlamaConfig |
|
>>> # Initializing a LLaMA llama-7b style configuration |
|
>>> configuration = LlamaConfig() |
|
>>> # Initializing a model from the llama-7b style configuration |
|
>>> model = LlamaModel(configuration) |
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
model_type = "llama" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
def __init__( |
|
self, |
|
rope_scaling=None, |
|
use_flashattn=True, |
|
log_scale=True, |
|
**kwargs, |
|
): |
|
super().__init__( |
|
**kwargs, |
|
) |
|
self.use_flashattn = use_flashattn |
|
self.log_scale = log_scale |
|
self.rope_theta = 10000 |
|
self.max_position_embeddings = 4096 |
|
self.rope_scaling = rope_scaling |
|
self._rope_scaling_validation() |
|
|
|
|
|
def _rope_scaling_validation(self): |
|
""" |
|
Validate the `rope_scaling` configuration. |
|
""" |
|
if self.rope_scaling is None: |
|
return |
|
|
|
|
|
|
|
|
|
|
|
|
|
rope_scaling_type = self.rope_scaling.get("type", None) |
|
rope_scaling_max_factor = self.rope_scaling.get("max_factor", None) |
|
rope_scaling_param_factor = self.rope_scaling.get("param_factor", None) |
|
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic", "clex"]: |
|
raise ValueError( |
|
f"`rope_scaling`'s name field must be one of ['linear', 'dynamic', 'clex'], got {rope_scaling_type}" |
|
) |
|
|
|
|
|
|
|
|