|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""PyTorch VideoLLaMA3 vision encoder model.""" |
|
|
|
import importlib.util |
|
import os.path as osp |
|
import math |
|
import warnings |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
from torch.nn.init import _calculate_fan_in_and_fan_out |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import is_flash_attn_2_available |
|
|
|
if is_flash_attn_2_available(): |
|
from flash_attn import flash_attn_varlen_func |
|
else: |
|
flash_attn_varlen_func = None |
|
|
|
try: |
|
from .configuration_videollama3_encoder import Videollama3VisionEncoderConfig |
|
except ImportError: |
|
spec = importlib.util.spec_from_file_location( |
|
"configuration_videollama3_encoder", |
|
osp.join(osp.dirname(__file__), "configuration_videollama3_encoder.py"), |
|
) |
|
configuration_videollama3_encoder = importlib.util.module_from_spec(spec) |
|
spec.loader.exec_module(configuration_videollama3_encoder) |
|
Videollama3VisionEncoderConfig = getattr( |
|
configuration_videollama3_encoder, |
|
"Videollama3VisionEncoderConfig", |
|
) |
|
|
|
|
|
def _trunc_normal_(tensor, mean, std, a, b): |
|
|
|
|
|
def norm_cdf(x): |
|
|
|
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 |
|
|
|
if (mean < a - 2 * std) or (mean > b + 2 * std): |
|
warnings.warn( |
|
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " |
|
"The distribution of values may be incorrect.", |
|
stacklevel=2, |
|
) |
|
|
|
|
|
|
|
|
|
l = norm_cdf((a - mean) / std) |
|
u = norm_cdf((b - mean) / std) |
|
|
|
|
|
|
|
tensor.uniform_(2 * l - 1, 2 * u - 1) |
|
|
|
|
|
|
|
tensor.erfinv_() |
|
|
|
|
|
tensor.mul_(std * math.sqrt(2.0)) |
|
tensor.add_(mean) |
|
|
|
|
|
tensor.clamp_(min=a, max=b) |
|
|
|
|
|
def trunc_normal_tf_( |
|
tensor: torch.Tensor, mean: float = 0.0, std: float = 1.0, a: float = -2.0, b: float = 2.0 |
|
) -> torch.Tensor: |
|
"""Fills the input Tensor with values drawn from a truncated |
|
normal distribution. The values are effectively drawn from the |
|
normal distribution :math:`\\mathcal{N}(\text{mean}, \text{std}^2)` |
|
with values outside :math:`[a, b]` redrawn until they are within |
|
the bounds. The method used for generating the random values works |
|
best when :math:`a \\leq \text{mean} \\leq b`. |
|
|
|
NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the |
|
bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0 |
|
and the result is subsequently scaled and shifted by the mean and std args. |
|
|
|
Args: |
|
tensor: an n-dimensional `torch.Tensor` |
|
mean: the mean of the normal distribution |
|
std: the standard deviation of the normal distribution |
|
a: the minimum cutoff value |
|
b: the maximum cutoff value |
|
""" |
|
with torch.no_grad(): |
|
_trunc_normal_(tensor, 0, 1.0, a, b) |
|
tensor.mul_(std).add_(mean) |
|
|
|
|
|
def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"): |
|
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor) |
|
if mode == "fan_in": |
|
denom = fan_in |
|
elif mode == "fan_out": |
|
denom = fan_out |
|
elif mode == "fan_avg": |
|
denom = (fan_in + fan_out) / 2 |
|
|
|
variance = scale / denom |
|
|
|
if distribution == "truncated_normal": |
|
|
|
trunc_normal_tf_(tensor, std=math.sqrt(variance) / 0.87962566103423978) |
|
elif distribution == "normal": |
|
with torch.no_grad(): |
|
tensor.normal_(std=math.sqrt(variance)) |
|
elif distribution == "uniform": |
|
bound = math.sqrt(3 * variance) |
|
with torch.no_grad(): |
|
tensor.uniform_(-bound, bound) |
|
else: |
|
raise ValueError(f"invalid distribution {distribution}") |
|
|
|
|
|
def lecun_normal_(tensor): |
|
variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal") |
|
|
|
|
|
def default_flax_embed_init(tensor): |
|
variance_scaling_(tensor, mode="fan_in", distribution="normal") |
|
|
|
|
|
|
|
def rotate_half(x): |
|
"""Rotates half the hidden dims of the input.""" |
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2 :] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
def apply_rotary_pos_emb_vision(tensor: torch.Tensor, freqs: torch.Tensor) -> torch.Tensor: |
|
orig_dtype = tensor.dtype |
|
tensor = tensor.float() |
|
cos = freqs.cos() |
|
sin = freqs.sin() |
|
cos = cos.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float() |
|
sin = sin.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float() |
|
output = (tensor * cos) + (rotate_half(tensor) * sin) |
|
output = output.to(orig_dtype) |
|
return output |
|
|
|
|
|
class VisionRotaryEmbedding(nn.Module): |
|
|
|
def __init__(self, dim: int, theta: float = 10000.0) -> None: |
|
super().__init__() |
|
inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim)) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
def forward(self, seqlen: int) -> torch.Tensor: |
|
seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype) |
|
freqs = torch.outer(seq, self.inv_freq) |
|
return freqs |
|
|
|
|
|
class Videollama3VisionEmbeddings(nn.Module): |
|
|
|
def __init__(self, config: Videollama3VisionEncoderConfig): |
|
super().__init__() |
|
self.config = config |
|
self.embed_dim = config.hidden_size |
|
self.patch_size = config.patch_size |
|
|
|
self.patch_embedding = nn.Conv2d( |
|
in_channels=config.num_channels, |
|
out_channels=self.embed_dim, |
|
kernel_size=self.patch_size, |
|
stride=self.patch_size, |
|
padding="valid", |
|
) |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
hidden_states = hidden_states.view( |
|
-1, self.config.num_channels, self.patch_size, self.patch_size |
|
) |
|
patch_embeds = self.patch_embedding(hidden_states) |
|
|
|
embeddings = patch_embeds.view(-1, self.embed_dim) |
|
|
|
return embeddings |
|
|
|
|
|
class VisionAttention(nn.Module): |
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.embed_dim = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.embed_dim // self.num_heads |
|
if self.head_dim * self.num_heads != self.embed_dim: |
|
raise ValueError( |
|
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" |
|
f" {self.num_heads})." |
|
) |
|
self.scale = self.head_dim**-0.5 |
|
self.dropout = config.attention_dropout |
|
|
|
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) |
|
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) |
|
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) |
|
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
cu_seqlens: torch.Tensor, |
|
rotary_pos_emb: torch.Tensor = None, |
|
) -> torch.Tensor: |
|
"""Input shape: Time x Channel""" |
|
|
|
q_len, _ = hidden_states.size() |
|
|
|
query_states = self.q_proj(hidden_states) |
|
key_states = self.k_proj(hidden_states) |
|
value_states = self.v_proj(hidden_states) |
|
|
|
query_states = query_states.view(q_len, self.num_heads, self.head_dim) |
|
key_states = key_states.view(q_len, self.num_heads, self.head_dim) |
|
value_states = value_states.view(q_len, self.num_heads, self.head_dim) |
|
|
|
query_states = apply_rotary_pos_emb_vision(query_states.unsqueeze(0), rotary_pos_emb).squeeze(0) |
|
key_states = apply_rotary_pos_emb_vision(key_states.unsqueeze(0), rotary_pos_emb).squeeze(0) |
|
|
|
attention_mask = torch.zeros([1, q_len, q_len], device=query_states.device, dtype=torch.bool) |
|
for i in range(1, len(cu_seqlens)): |
|
attention_mask[..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i]] = True |
|
|
|
query_states = query_states.transpose(0, 1) |
|
key_states = key_states.transpose(0, 1) |
|
value_states = value_states.transpose(0, 1) |
|
|
|
attn_weights = torch.matmul(query_states, key_states.transpose(1, 2)) / math.sqrt(self.head_dim) |
|
attn_weights = attn_weights + attention_mask |
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) |
|
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) |
|
attn_output = torch.matmul(attn_weights, value_states) |
|
|
|
attn_output = attn_output.transpose(0, 1) |
|
attn_output = attn_output.reshape(q_len, -1) |
|
attn_output = self.out_proj(attn_output) |
|
|
|
return attn_output |
|
|
|
|
|
class VisionFlashAttention2(VisionAttention): |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
cu_seqlens: torch.Tensor, |
|
rotary_pos_emb: torch.Tensor = None, |
|
) -> torch.Tensor: |
|
q_len, _ = hidden_states.size() |
|
|
|
query_states = self.q_proj(hidden_states) |
|
key_states = self.k_proj(hidden_states) |
|
value_states = self.v_proj(hidden_states) |
|
|
|
|
|
|
|
|
|
query_states = query_states.view(q_len, self.num_heads, self.head_dim) |
|
key_states = key_states.view(q_len, self.num_heads, self.head_dim) |
|
value_states = value_states.view(q_len, self.num_heads, self.head_dim) |
|
query_states = apply_rotary_pos_emb_vision(query_states.unsqueeze(0), rotary_pos_emb).squeeze(0) |
|
key_states = apply_rotary_pos_emb_vision(key_states.unsqueeze(0), rotary_pos_emb).squeeze(0) |
|
|
|
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item() |
|
attn_output = flash_attn_varlen_func(query_states, key_states, value_states, cu_seqlens, cu_seqlens, max_seqlen, max_seqlen).reshape( |
|
q_len, -1 |
|
) |
|
attn_output = self.out_proj(attn_output) |
|
|
|
return attn_output |
|
|
|
|
|
class VisionSdpaAttention(VisionAttention): |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
cu_seqlens: torch.Tensor, |
|
rotary_pos_emb: torch.Tensor = None, |
|
) -> torch.Tensor: |
|
seq_length = hidden_states.shape[0] |
|
query_states = self.q_proj(hidden_states) |
|
key_states = self.k_proj(hidden_states) |
|
value_states = self.v_proj(hidden_states) |
|
|
|
query_states = query_states.view(seq_length, self.num_heads, self.head_dim) |
|
key_states = key_states.view(seq_length, self.num_heads, self.head_dim) |
|
value_states = value_states.view(seq_length, self.num_heads, self.head_dim) |
|
|
|
query_states = apply_rotary_pos_emb_vision(query_states.unsqueeze(0), rotary_pos_emb).squeeze(0) |
|
key_states = apply_rotary_pos_emb_vision(key_states.unsqueeze(0), rotary_pos_emb).squeeze(0) |
|
|
|
attention_mask = torch.zeros([1, seq_length, seq_length], device=query_states.device, dtype=torch.bool) |
|
for i in range(1, len(cu_seqlens)): |
|
attention_mask[..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i]] = True |
|
|
|
query_states = query_states.transpose(0, 1) |
|
key_states = key_states.transpose(0, 1) |
|
value_states = value_states.transpose(0, 1) |
|
attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, attention_mask, dropout_p=0.0) |
|
attn_output = attn_output.transpose(0, 1) |
|
attn_output = attn_output.reshape(seq_length, -1) |
|
attn_output = self.proj(attn_output) |
|
return attn_output |
|
|
|
|
|
VISION_ATTENTION_CLASSES = { |
|
"eager": VisionAttention, |
|
"flash_attention_2": VisionFlashAttention2, |
|
"sdpa": VisionSdpaAttention, |
|
} |
|
|
|
|
|
|
|
class Videollama3VisionMLP(nn.Module): |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.activation_fn = ACT2FN[config.hidden_act] |
|
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) |
|
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.fc1(hidden_states) |
|
hidden_states = self.activation_fn(hidden_states) |
|
hidden_states = self.fc2(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class Videollama3VisionEncoderLayer(nn.Module): |
|
|
|
def __init__(self, config: Videollama3VisionEncoderConfig): |
|
super().__init__() |
|
self.embed_dim = config.hidden_size |
|
self.self_attn = VISION_ATTENTION_CLASSES[config._attn_implementation](config=config) |
|
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) |
|
self.mlp = Videollama3VisionMLP(config) |
|
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) |
|
|
|
|
|
def forward(self, hidden_states, cu_seqlens, rotary_pos_emb) -> torch.Tensor: |
|
hidden_states = hidden_states + self.self_attn( |
|
self.layer_norm1(hidden_states), cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb |
|
) |
|
hidden_states = hidden_states + self.mlp(self.layer_norm2(hidden_states)) |
|
return hidden_states |
|
|
|
|
|
class Videollama3VisionTransformerEncoder(nn.Module): |
|
|
|
def __init__(self, config: Videollama3VisionEncoderConfig): |
|
super().__init__() |
|
self.config = config |
|
head_dim = config.hidden_size // config.num_attention_heads |
|
self.rotary_pos_emb = VisionRotaryEmbedding(head_dim // 2) |
|
self.layers = nn.ModuleList([Videollama3VisionEncoderLayer(config) for _ in range(config.num_hidden_layers)]) |
|
self.gradient_checkpointing = False |
|
|
|
def rot_pos_emb(self, grid_sizes, merge_sizes): |
|
pos_ids = [] |
|
for (t, h, w), merge_size in zip(grid_sizes, merge_sizes): |
|
hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w) |
|
hpos_ids = hpos_ids.reshape( |
|
h // merge_size, |
|
merge_size, |
|
w // merge_size, |
|
merge_size, |
|
) |
|
hpos_ids = hpos_ids.permute(0, 2, 1, 3) |
|
hpos_ids = hpos_ids.flatten() |
|
|
|
wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1) |
|
wpos_ids = wpos_ids.reshape( |
|
h // merge_size, |
|
merge_size, |
|
w // merge_size, |
|
merge_size, |
|
) |
|
wpos_ids = wpos_ids.permute(0, 2, 1, 3) |
|
wpos_ids = wpos_ids.flatten() |
|
pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1)) |
|
|
|
pos_ids = torch.cat(pos_ids, dim=0) |
|
max_grid_size = grid_sizes[:, 1:].max() |
|
rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size) |
|
rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1) |
|
|
|
return rotary_pos_emb |
|
|
|
def forward(self, hidden_states, grid_sizes, merge_sizes) -> torch.Tensor: |
|
rotary_pos_emb = self.rot_pos_emb(grid_sizes, merge_sizes) |
|
|
|
cu_seqlens = torch.repeat_interleave(grid_sizes[:, 1] * grid_sizes[:, 2], grid_sizes[:, 0]).cumsum(dim=0, dtype=torch.int32) |
|
cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0) |
|
|
|
for blk in self.layers: |
|
if self.gradient_checkpointing and self.training: |
|
hidden_states = self._gradient_checkpointing_func( |
|
blk.__call__, |
|
hidden_states, |
|
cu_seqlens, |
|
rotary_pos_emb |
|
) |
|
else: |
|
hidden_states = blk(hidden_states, cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb) |
|
|
|
return hidden_states |
|
|
|
|
|
class Videollama3VisionEncoderModel(PreTrainedModel): |
|
|
|
config_class = Videollama3VisionEncoderConfig |
|
base_model_prefix = "videollama3" |
|
main_input_name = "pixel_values" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = [ |
|
"Videollama3VisionEncoderLayer", |
|
"Videollama3VisionEmbeddings", |
|
] |
|
_supports_flash_attn_2 = True |
|
_supports_sdpa = True |
|
|
|
def __init__(self, config: Videollama3VisionEncoderConfig): |
|
super().__init__(config=config) |
|
embed_dim = config.hidden_size |
|
|
|
self.embeddings = Videollama3VisionEmbeddings(config) |
|
self.encoder = Videollama3VisionTransformerEncoder(config) |
|
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) |
|
|
|
self.post_init() |
|
|
|
def forward(self, pixel_values, grid_sizes, merge_sizes=None) -> torch.Tensor: |
|
hidden_states = self.embeddings(pixel_values) |
|
hidden_states = self.encoder(hidden_states, grid_sizes, merge_sizes) |
|
hidden_states = self.post_layernorm(hidden_states) |
|
|
|
hidden_states_chunks = hidden_states.split(grid_sizes.prod(dim=1).tolist(), dim=0) |
|
outputs = [] |
|
|
|
for hidden_states, grid_size, merge_size in zip(hidden_states_chunks, grid_sizes, merge_sizes): |
|
|
|
c = hidden_states.shape[-1] |
|
hidden_states = hidden_states.view( |
|
grid_size[0], grid_size[1] // merge_size, grid_size[2] // merge_size, merge_size, merge_size, c |
|
).permute(0, 1, 3, 2, 4, 5) |
|
hidden_states = hidden_states.reshape( |
|
grid_size[0], grid_size[1], grid_size[2], c |
|
).permute(0, 3, 1, 2) |
|
hidden_states = torch.nn.functional.interpolate( |
|
hidden_states, |
|
size=(grid_size[1] // merge_size, grid_size[2] // merge_size), |
|
mode='bilinear' |
|
) |
|
hidden_states = hidden_states.permute(0, 2, 3, 1).view(-1, c) |
|
|
|
|
|
|
|
|
|
|
|
|
|
outputs.append(hidden_states) |
|
|
|
return torch.cat(outputs, dim=0) |
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights""" |
|
if isinstance(module, nn.Embedding): |
|
default_flax_embed_init(module.weight) |
|
elif isinstance(module, VisionAttention): |
|
nn.init.xavier_uniform_(module.q_proj.weight) |
|
nn.init.xavier_uniform_(module.k_proj.weight) |
|
nn.init.xavier_uniform_(module.v_proj.weight) |
|
nn.init.xavier_uniform_(module.out_proj.weight) |
|
nn.init.zeros_(module.q_proj.bias) |
|
nn.init.zeros_(module.k_proj.bias) |
|
nn.init.zeros_(module.v_proj.bias) |
|
nn.init.zeros_(module.out_proj.bias) |
|
elif isinstance(module, Videollama3VisionMLP): |
|
nn.init.xavier_uniform_(module.fc1.weight) |
|
nn.init.xavier_uniform_(module.fc2.weight) |
|
nn.init.normal_(module.fc1.bias, std=1e-6) |
|
nn.init.normal_(module.fc2.bias, std=1e-6) |
|
elif isinstance(module, (nn.Linear, nn.Conv2d)): |
|
lecun_normal_(module.weight) |
|
if module.bias is not None: |
|
nn.init.zeros_(module.bias) |
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
|