# Adopted from https://github.com/huggingface/transformers/blob/main/src/transformers/models/qwen2_vl/image_processing_qwen2_vl.py. # Below is the original copyright: # Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for VideoLLaMA3.""" import math from typing import Dict, List, Optional, Union import numpy as np import torch from transformers.image_processing_utils import BaseImageProcessor, BatchFeature from transformers.image_utils import ImageInput from transformers.image_transforms import ( convert_to_rgb, resize, to_channel_dimension_format, ) from transformers.image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, VideoInput, get_image_size, infer_channel_dimension_format, is_scaled_image, is_valid_image, make_list_of_images, to_numpy_array, ) from transformers.utils import TensorType, is_vision_available, logging logger = logging.get_logger(__name__) if is_vision_available(): from PIL import Image def is_valid_video(video) -> bool: if isinstance(video, (list, tuple)): return all(is_valid_image(frame) for frame in video) elif isinstance(video, np.ndarray): return video.ndim == 4 elif isinstance(video, torch.Tensor): return video.ndim == 4 return False def make_batched_images(images) -> List[List[ImageInput]]: """ Accepts images in list or nested list format, and makes a list of images for preprocessing. Args: images (`Union[List[List[ImageInput]], List[ImageInput], ImageInput]`): The input image. Returns: list: A list of images. """ if isinstance(images, (list, tuple)): # list of images/videos if not all(is_valid_video(image) or is_valid_image(image) for image in images): raise ValueError(f"Could not make batched images from {images}") return images elif is_valid_video(images) or is_valid_image(images): # single image/video return [images] raise ValueError(f"Could not make batched images from {images}") def simple_batched_resize( images, factor: int = 28, min_tokens: int = 4 * 4, max_tokens: int = 16384, input_data_format: str = None ): min_pixels = min_tokens * factor * factor max_pixels = max_tokens * factor * factor num_images = 0 for image in images: if is_valid_video(image): num_images += len(image) else: num_images += 1 image_sizes = [] for image in images: if is_valid_video(image): image = image[0] if isinstance(image, Image.Image): height, width = image.size else: height, width = get_image_size(image, channel_dim=input_data_format) image_sizes.append([height, width]) tmp_image_sizes = [] for height, width in image_sizes: h_bar = round(height / factor) * factor w_bar = round(width / factor) * factor if h_bar * w_bar > (max_pixels // num_images): beta = math.sqrt((height * width) / (max_pixels // num_images)) h_bar = math.floor(height / beta / factor) * factor w_bar = math.floor(width / beta / factor) * factor # per image min_pixels if h_bar * w_bar < min_pixels: beta = math.sqrt(min_pixels / (height * width)) h_bar = math.ceil(height * beta / factor) * factor w_bar = math.ceil(width * beta / factor) * factor tmp_image_sizes.append((h_bar, w_bar)) image_sizes = tmp_image_sizes return image_sizes def batched_resize( images, factors: List[int], min_tokens: int = 4 * 4, max_tokens: int = 16384, input_data_format: str = None ): image_sizes = [] for image in images: if is_valid_video(image): num_frame = len(image) image = image[0] else: num_frame = 1 if isinstance(image, Image.Image): height, width = image.size else: height, width = get_image_size(image, channel_dim=input_data_format) image_sizes.append([num_frame, height, width]) # global max_pixels smart_scale_factors = 1.0 total_tokens = 0 for (num_frame, height, width), factor in zip(image_sizes, factors): total_tokens += num_frame * math.ceil(height / factor) * math.ceil(width / factor) # TODO: add min_pixels if total_tokens > max_tokens: beta = math.sqrt(total_tokens / max_tokens) tmp_image_sizes = [] for (_, height, width), factor in zip(image_sizes, factors): h_bar = math.floor(height / beta / factor) * factor w_bar = math.floor(width / beta / factor) * factor tmp_image_sizes.append((h_bar, w_bar)) image_sizes = tmp_image_sizes else: tmp_image_sizes = [] for (_, height, width), factor in zip(image_sizes, factors): height = round(height / factor) * factor width = round(width / factor) * factor tmp_image_sizes.append((height, width)) image_sizes = tmp_image_sizes return image_sizes class Videollama3ImageProcessor(BaseImageProcessor): r""" Constructs a VideoLLaMA3 image processor that dynamically resizes images based on the original images. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image's (height, width) dimensions. resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`): Resampling filter to use when resizing the image. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the image by the specified scale `rescale_factor`. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. do_normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`): Mean to use if normalizing the image. This is a float or list of floats for each channel in the image. image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`): Standard deviation to use if normalizing the image. This is a float or list of floats for each channel in the image. do_convert_rgb (`bool`, *optional*, defaults to `True`): Whether to convert the image to RGB. min_pixels (`int`, *optional*, defaults to `56 * 56`): The min pixels of the image to resize the image. max_pixels (`int`, *optional*, defaults to `28 * 28 * 1280`): The max pixels of the image to resize the image. patch_size (`int`, *optional*, defaults to 14): The spacial patch size of the vision encoder. """ model_input_names = ["pixel_values", "grid_sizes", "merge_sizes"] def __init__( self, do_resize: bool = True, resample: PILImageResampling = PILImageResampling.BICUBIC, do_rescale: bool = True, rescale_factor: Union[int, float] = 1 / 255, do_normalize: bool = True, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_convert_rgb: bool = True, min_tokens: int = 4 * 4, max_tokens: int = 16384, patch_size: int = 14, **kwargs, ) -> None: super().__init__(**kwargs) self.do_resize = do_resize self.resample = resample self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD self.min_tokens = min_tokens self.max_tokens = max_tokens self.patch_size = patch_size self.do_convert_rgb = do_convert_rgb def _preprocess( self, images: Union[ImageInput, VideoInput], target_size: List[int], merge_size: int = 1, do_resize: bool = None, resample: PILImageResampling = None, do_rescale: bool = None, rescale_factor: float = None, do_normalize: bool = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_convert_rgb: bool = None, data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, ): """ Preprocess an image or batch of images. Copy of the `preprocess` method from `CLIPImageProcessor`. Args: images (`ImageInput`): Image or batch of images to preprocess. Expects pixel values ranging from 0 to 255. If pixel values range from 0 to 1, set `do_rescale=False`. target_size (`List[int]`): The target size to resize the image to. Should be a list of two integers: [target_height, target_width]. merge_size (`int`, *optional*, defaults to `1`): The merge size after the vision encoder. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. resample (`PILImageResampling`, *optional*, defaults to `self.resample`): Resampling filter to use if resizing the image. This can be one of the `PILImageResampling` enums. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Scale factor to use if rescaling the image. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Mean to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Standard deviation to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image. do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`): Whether to convert the image to RGB. data_format (`ChannelDimension`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - Unset: Use the channel dimension format of the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ images = make_list_of_images(images) if do_convert_rgb: images = [convert_to_rgb(image) for image in images] # All transformations expect numpy arrays. images = [to_numpy_array(image) for image in images] if is_scaled_image(images[0]) and do_rescale: logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: # We assume that all images have the same channel dimension format. input_data_format = infer_channel_dimension_format(images[0]) height, width = get_image_size(images[0], channel_dim=input_data_format) resized_height, resized_width = height, width processed_images = [] for image in images: if do_resize: resized_height, resized_width = target_size image = resize( image, size=(resized_height, resized_width), resample=resample, input_data_format=input_data_format ) if do_rescale: image = self.rescale(image, scale=rescale_factor, input_data_format=input_data_format) if do_normalize: image = self.normalize( image=image, mean=image_mean, std=image_std, input_data_format=input_data_format ) image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) processed_images.append(image) patches = np.array(processed_images) if data_format == ChannelDimension.LAST: patches = patches.transpose(0, 3, 1, 2) t = patches.shape[0] channel = patches.shape[1] grid_h, grid_w = resized_height // self.patch_size, resized_width // self.patch_size patches = patches.reshape( t, channel, grid_h // merge_size, merge_size, self.patch_size, grid_w // merge_size, merge_size, self.patch_size, ) patches = patches.transpose(0, 2, 5, 3, 6, 1, 4, 7) flatten_patches = patches.reshape( t * grid_h * grid_w, channel * self.patch_size * self.patch_size ) return flatten_patches, (t, grid_h, grid_w) def preprocess( self, images: ImageInput, do_resize: bool = None, resample: PILImageResampling = None, do_rescale: bool = None, rescale_factor: float = None, do_normalize: bool = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_convert_rgb: bool = None, merge_size: Optional[Union[int, List[int]]] = None, return_tensors: Optional[Union[str, TensorType]] = None, data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, ): """ Args: images (`ImageInput`): Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. resample (`int`, *optional*, defaults to `self.resample`): Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only has an effect if `do_resize` is set to `True`. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to `True`. do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`): Whether to convert the image to RGB. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - Unset: Use the channel dimension format of the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ do_resize = do_resize if do_resize is not None else self.do_resize resample = resample if resample is not None else self.resample do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std merge_size = merge_size if merge_size is not None else self.merge_size do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb images = make_batched_images(images) if isinstance(merge_size, (list, tuple)): assert len(merge_size) == len(images), "Merge size must be the same length as images." merge_sizes = merge_size else: merge_sizes = [merge_size for _ in images] if all(merge_size == merge_sizes[0] for merge_size in merge_sizes): target_sizes = simple_batched_resize( images, factor=self.patch_size * merge_sizes[0], min_tokens=self.min_tokens, max_tokens=self.max_tokens, input_data_format=input_data_format, ) else: target_sizes = batched_resize( images, factors=[self.patch_size * merge_size for merge_size in merge_sizes], min_tokens=self.min_tokens, max_tokens=self.max_tokens, input_data_format=input_data_format, ) pixel_values, grid_sizes = [], [] for image, merge_size, target_size in zip(images, merge_sizes, target_sizes): patches, grid_size = self._preprocess( image, target_size=target_size, merge_size=merge_size, do_resize=do_resize, resample=resample, do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, data_format=data_format, do_convert_rgb=do_convert_rgb, input_data_format=input_data_format, ) pixel_values.append(patches) grid_sizes.append(grid_size) pixel_values = np.concatenate(pixel_values, axis=0) grid_sizes = np.array(grid_sizes) merge_sizes = np.array(merge_sizes) data = { "pixel_values": pixel_values, "grid_sizes": grid_sizes, "merge_sizes": merge_sizes, } return BatchFeature(data=data, tensor_type=return_tensors)