Upload processor
Browse files- README.md +199 -0
- added_tokens.json +27 -0
- chat_template.json +3 -0
- image_processing_videollama3.py +473 -0
- merges.txt +0 -0
- preprocessor_config.json +27 -0
- processing_videollama3.py +891 -0
- processor_config.json +10 -0
- special_tokens_map.json +31 -0
- tokenizer_config.json +236 -0
- vocab.json +0 -0
README.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
added_tokens.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<image>": 151665,
|
4 |
+
"<tool_call>": 151657,
|
5 |
+
"<|box_end|>": 151649,
|
6 |
+
"<|box_start|>": 151648,
|
7 |
+
"<|endoftext|>": 151643,
|
8 |
+
"<|file_sep|>": 151664,
|
9 |
+
"<|fim_middle|>": 151660,
|
10 |
+
"<|fim_pad|>": 151662,
|
11 |
+
"<|fim_prefix|>": 151659,
|
12 |
+
"<|fim_suffix|>": 151661,
|
13 |
+
"<|im_end|>": 151645,
|
14 |
+
"<|im_start|>": 151644,
|
15 |
+
"<|image_pad|>": 151655,
|
16 |
+
"<|object_ref_end|>": 151647,
|
17 |
+
"<|object_ref_start|>": 151646,
|
18 |
+
"<|quad_end|>": 151651,
|
19 |
+
"<|quad_start|>": 151650,
|
20 |
+
"<|repo_name|>": 151663,
|
21 |
+
"<|stream_end|>": 151667,
|
22 |
+
"<|stream_start|>": 151666,
|
23 |
+
"<|video_pad|>": 151656,
|
24 |
+
"<|vision_end|>": 151653,
|
25 |
+
"<|vision_pad|>": 151654,
|
26 |
+
"<|vision_start|>": 151652
|
27 |
+
}
|
chat_template.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"chat_template": "\n{%- set identifier = 'im' %}\n{% for message in messages %}\n {% if add_system_prompt and loop.first and message['role'] != 'system' %}\n {{- '<|im_start|>system\nYou are VideoLLaMA3 created by Alibaba DAMO Academy, a helpful assistant to help people understand images and videos.<|im_end|>\n' -}}\n {% endif %}\n {% if message['role'] == 'stream' %}\n {% set identifier = 'stream' %}\n {% else %}\n {% set identifier = 'im' %}\n {% endif %}\n {{- '<|' + identifier + '_start|>' + message['role'] + '\n' -}}\n {% if message['content'] is string %}\n {{- message['content'] + '<|' + identifier + '_end|>\n' -}}\n {% else %}\n {% for content in message['content'] %}\n {% if content is string %}\n {{- content -}}\n {% elif content['type'] == 'text' or 'text' in content %}\n {{- content['text'] -}}\n {% elif content['type'] == 'image' or 'image' in content %}\n {% if 'timestamp' in content %}\n {{- 'Time ' + content['timestamp'] | round(1) | string + 's: ' -}}\n {% endif %}\n {{- image_token + '\n' -}}\n {% elif content['type'] == 'video' or 'video' in content %}\n {% for i in range(content['num_frames']) %}\n {% if 'timestamps' in content %}\n {{- 'Time ' + content['timestamps'][i] | round(1) | string + 's:' -}}\n {% endif %}\n {% if i < content['num_frames'] - 1 %}\n {{- image_token + ',' -}}\n {% else %}\n {{- image_token + '\n' -}}\n {% endif %}\n {% endfor %}\n {% endif %}\n {% endfor %}\n {% if identifier == 'stream' %}\n {{- '<|' + identifier + '_end|>' -}}\n {% else %}\n {{- '<|' + identifier + '_end|>\n' -}}\n {% endif %}\n {% endif %}\n{% endfor %}\n{% if add_generation_prompt %}\n {{- '<|im_start|>assistant\n' -}}\n{% endif %}\n"
|
3 |
+
}
|
image_processing_videollama3.py
ADDED
@@ -0,0 +1,473 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adopted from https://github.com/huggingface/transformers/blob/main/src/transformers/models/qwen2_vl/image_processing_qwen2_vl.py.
|
2 |
+
# Below is the original copyright:
|
3 |
+
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
|
4 |
+
#
|
5 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
6 |
+
# and OPT implementations in this library. It has been modified from its
|
7 |
+
# original forms to accommodate minor architectural differences compared
|
8 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
9 |
+
#
|
10 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
11 |
+
# you may not use this file except in compliance with the License.
|
12 |
+
# You may obtain a copy of the License at
|
13 |
+
#
|
14 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
15 |
+
#
|
16 |
+
# Unless required by applicable law or agreed to in writing, software
|
17 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
18 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
19 |
+
# See the License for the specific language governing permissions and
|
20 |
+
# limitations under the License.
|
21 |
+
"""Image processor class for VideoLLaMA3."""
|
22 |
+
|
23 |
+
import math
|
24 |
+
from typing import Dict, List, Optional, Union
|
25 |
+
|
26 |
+
import numpy as np
|
27 |
+
|
28 |
+
import torch
|
29 |
+
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
|
30 |
+
from transformers.image_utils import ImageInput
|
31 |
+
from transformers.image_transforms import (
|
32 |
+
convert_to_rgb,
|
33 |
+
resize,
|
34 |
+
to_channel_dimension_format,
|
35 |
+
)
|
36 |
+
from transformers.image_utils import (
|
37 |
+
OPENAI_CLIP_MEAN,
|
38 |
+
OPENAI_CLIP_STD,
|
39 |
+
ChannelDimension,
|
40 |
+
ImageInput,
|
41 |
+
PILImageResampling,
|
42 |
+
VideoInput,
|
43 |
+
get_image_size,
|
44 |
+
infer_channel_dimension_format,
|
45 |
+
is_scaled_image,
|
46 |
+
is_valid_image,
|
47 |
+
make_list_of_images,
|
48 |
+
to_numpy_array,
|
49 |
+
)
|
50 |
+
from transformers.utils import TensorType, is_vision_available, logging
|
51 |
+
|
52 |
+
|
53 |
+
logger = logging.get_logger(__name__)
|
54 |
+
|
55 |
+
|
56 |
+
if is_vision_available():
|
57 |
+
from PIL import Image
|
58 |
+
|
59 |
+
|
60 |
+
def is_valid_video(video) -> bool:
|
61 |
+
if isinstance(video, (list, tuple)):
|
62 |
+
return all(is_valid_image(frame) for frame in video)
|
63 |
+
elif isinstance(video, np.ndarray):
|
64 |
+
return video.ndim == 4
|
65 |
+
elif isinstance(video, torch.Tensor):
|
66 |
+
return video.ndim == 4
|
67 |
+
return False
|
68 |
+
|
69 |
+
|
70 |
+
def make_batched_images(images) -> List[List[ImageInput]]:
|
71 |
+
"""
|
72 |
+
Accepts images in list or nested list format, and makes a list of images for preprocessing.
|
73 |
+
|
74 |
+
Args:
|
75 |
+
images (`Union[List[List[ImageInput]], List[ImageInput], ImageInput]`):
|
76 |
+
The input image.
|
77 |
+
|
78 |
+
Returns:
|
79 |
+
list: A list of images.
|
80 |
+
"""
|
81 |
+
if isinstance(images, (list, tuple)):
|
82 |
+
# list of images/videos
|
83 |
+
if not all(is_valid_video(image) or is_valid_image(image) for image in images):
|
84 |
+
raise ValueError(f"Could not make batched images from {images}")
|
85 |
+
return images
|
86 |
+
elif is_valid_video(images) or is_valid_image(images):
|
87 |
+
# single image/video
|
88 |
+
return [images]
|
89 |
+
|
90 |
+
raise ValueError(f"Could not make batched images from {images}")
|
91 |
+
|
92 |
+
|
93 |
+
def simple_batched_resize(
|
94 |
+
images, factor: int = 28, min_tokens: int = 4 * 4, max_tokens: int = 16384, input_data_format: str = None
|
95 |
+
):
|
96 |
+
min_pixels = min_tokens * factor * factor
|
97 |
+
max_pixels = max_tokens * factor * factor
|
98 |
+
|
99 |
+
num_images = 0
|
100 |
+
for image in images:
|
101 |
+
if is_valid_video(image):
|
102 |
+
num_images += len(image)
|
103 |
+
else:
|
104 |
+
num_images += 1
|
105 |
+
|
106 |
+
image_sizes = []
|
107 |
+
for image in images:
|
108 |
+
if is_valid_video(image):
|
109 |
+
image = image[0]
|
110 |
+
if isinstance(image, Image.Image):
|
111 |
+
height, width = image.size
|
112 |
+
else:
|
113 |
+
height, width = get_image_size(image, channel_dim=input_data_format)
|
114 |
+
image_sizes.append([height, width])
|
115 |
+
|
116 |
+
tmp_image_sizes = []
|
117 |
+
for height, width in image_sizes:
|
118 |
+
h_bar = round(height / factor) * factor
|
119 |
+
w_bar = round(width / factor) * factor
|
120 |
+
if h_bar * w_bar > (max_pixels // num_images):
|
121 |
+
beta = math.sqrt((height * width) / (max_pixels // num_images))
|
122 |
+
h_bar = math.floor(height / beta / factor) * factor
|
123 |
+
w_bar = math.floor(width / beta / factor) * factor
|
124 |
+
# per image min_pixels
|
125 |
+
if h_bar * w_bar < min_pixels:
|
126 |
+
beta = math.sqrt(min_pixels / (height * width))
|
127 |
+
h_bar = math.ceil(height * beta / factor) * factor
|
128 |
+
w_bar = math.ceil(width * beta / factor) * factor
|
129 |
+
tmp_image_sizes.append((h_bar, w_bar))
|
130 |
+
image_sizes = tmp_image_sizes
|
131 |
+
return image_sizes
|
132 |
+
|
133 |
+
|
134 |
+
def batched_resize(
|
135 |
+
images, factors: List[int], min_tokens: int = 4 * 4, max_tokens: int = 16384, input_data_format: str = None
|
136 |
+
):
|
137 |
+
image_sizes = []
|
138 |
+
for image in images:
|
139 |
+
if is_valid_video(image):
|
140 |
+
num_frame = len(image)
|
141 |
+
image = image[0]
|
142 |
+
else:
|
143 |
+
num_frame = 1
|
144 |
+
if isinstance(image, Image.Image):
|
145 |
+
height, width = image.size
|
146 |
+
else:
|
147 |
+
height, width = get_image_size(image, channel_dim=input_data_format)
|
148 |
+
image_sizes.append([num_frame, height, width])
|
149 |
+
|
150 |
+
# global max_pixels
|
151 |
+
smart_scale_factors = 1.0
|
152 |
+
total_tokens = 0
|
153 |
+
for (num_frame, height, width), factor in zip(image_sizes, factors):
|
154 |
+
total_tokens += num_frame * math.ceil(height / factor) * math.ceil(width / factor)
|
155 |
+
|
156 |
+
# TODO: add min_pixels
|
157 |
+
if total_tokens > max_tokens:
|
158 |
+
beta = math.sqrt(total_tokens / max_tokens)
|
159 |
+
tmp_image_sizes = []
|
160 |
+
for (_, height, width), factor in zip(image_sizes, factors):
|
161 |
+
h_bar = math.floor(height / beta / factor) * factor
|
162 |
+
w_bar = math.floor(width / beta / factor) * factor
|
163 |
+
tmp_image_sizes.append((h_bar, w_bar))
|
164 |
+
image_sizes = tmp_image_sizes
|
165 |
+
else:
|
166 |
+
tmp_image_sizes = []
|
167 |
+
for (_, height, width), factor in zip(image_sizes, factors):
|
168 |
+
height = round(height / factor) * factor
|
169 |
+
width = round(width / factor) * factor
|
170 |
+
tmp_image_sizes.append((height, width))
|
171 |
+
image_sizes = tmp_image_sizes
|
172 |
+
|
173 |
+
return image_sizes
|
174 |
+
|
175 |
+
|
176 |
+
class Videollama3ImageProcessor(BaseImageProcessor):
|
177 |
+
r"""
|
178 |
+
Constructs a DAMOVL image processor that dynamically resizes images based on the original images.
|
179 |
+
|
180 |
+
Args:
|
181 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
182 |
+
Whether to resize the image's (height, width) dimensions.
|
183 |
+
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
|
184 |
+
Resampling filter to use when resizing the image.
|
185 |
+
do_rescale (`bool`, *optional*, defaults to `True`):
|
186 |
+
Whether to rescale the image by the specified scale `rescale_factor`.
|
187 |
+
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
|
188 |
+
Scale factor to use if rescaling the image.
|
189 |
+
do_normalize (`bool`, *optional*, defaults to `True`):
|
190 |
+
Whether to normalize the image.
|
191 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`):
|
192 |
+
Mean to use if normalizing the image. This is a float or list of floats for each channel in the image.
|
193 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`):
|
194 |
+
Standard deviation to use if normalizing the image. This is a float or list of floats for each channel in the image.
|
195 |
+
do_convert_rgb (`bool`, *optional*, defaults to `True`):
|
196 |
+
Whether to convert the image to RGB.
|
197 |
+
min_pixels (`int`, *optional*, defaults to `56 * 56`):
|
198 |
+
The min pixels of the image to resize the image.
|
199 |
+
max_pixels (`int`, *optional*, defaults to `28 * 28 * 1280`):
|
200 |
+
The max pixels of the image to resize the image.
|
201 |
+
patch_size (`int`, *optional*, defaults to 14):
|
202 |
+
The spacial patch size of the vision encoder.
|
203 |
+
"""
|
204 |
+
|
205 |
+
model_input_names = ["pixel_values", "grid_sizes", "merge_sizes"]
|
206 |
+
|
207 |
+
def __init__(
|
208 |
+
self,
|
209 |
+
do_resize: bool = True,
|
210 |
+
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
211 |
+
do_rescale: bool = True,
|
212 |
+
rescale_factor: Union[int, float] = 1 / 255,
|
213 |
+
do_normalize: bool = True,
|
214 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
215 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
216 |
+
do_convert_rgb: bool = True,
|
217 |
+
min_tokens: int = 4 * 4,
|
218 |
+
max_tokens: int = 16384,
|
219 |
+
patch_size: int = 14,
|
220 |
+
**kwargs,
|
221 |
+
) -> None:
|
222 |
+
super().__init__(**kwargs)
|
223 |
+
self.do_resize = do_resize
|
224 |
+
self.resample = resample
|
225 |
+
self.do_rescale = do_rescale
|
226 |
+
self.rescale_factor = rescale_factor
|
227 |
+
self.do_normalize = do_normalize
|
228 |
+
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
|
229 |
+
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
|
230 |
+
self.min_tokens = min_tokens
|
231 |
+
self.max_tokens = max_tokens
|
232 |
+
self.patch_size = patch_size
|
233 |
+
self.do_convert_rgb = do_convert_rgb
|
234 |
+
|
235 |
+
def _preprocess(
|
236 |
+
self,
|
237 |
+
images: Union[ImageInput, VideoInput],
|
238 |
+
target_size: List[int],
|
239 |
+
merge_size: int = 1,
|
240 |
+
do_resize: bool = None,
|
241 |
+
resample: PILImageResampling = None,
|
242 |
+
do_rescale: bool = None,
|
243 |
+
rescale_factor: float = None,
|
244 |
+
do_normalize: bool = None,
|
245 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
246 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
247 |
+
do_convert_rgb: bool = None,
|
248 |
+
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
|
249 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
250 |
+
):
|
251 |
+
"""
|
252 |
+
Preprocess an image or batch of images. Copy of the `preprocess` method from `CLIPImageProcessor`.
|
253 |
+
|
254 |
+
Args:
|
255 |
+
images (`ImageInput`):
|
256 |
+
Image or batch of images to preprocess. Expects pixel values ranging from 0 to 255. If pixel values range from 0 to 1, set `do_rescale=False`.
|
257 |
+
target_size (`List[int]`):
|
258 |
+
The target size to resize the image to. Should be a list of two integers: [target_height, target_width].
|
259 |
+
merge_size (`int`, *optional*, defaults to `1`):
|
260 |
+
The merge size after the vision encoder.
|
261 |
+
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
262 |
+
Whether to resize the image.
|
263 |
+
resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
|
264 |
+
Resampling filter to use if resizing the image. This can be one of the `PILImageResampling` enums.
|
265 |
+
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
266 |
+
Whether to rescale the image.
|
267 |
+
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
268 |
+
Scale factor to use if rescaling the image.
|
269 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
270 |
+
Whether to normalize the image.
|
271 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
272 |
+
Mean to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
|
273 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
274 |
+
Standard deviation to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
|
275 |
+
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
|
276 |
+
Whether to convert the image to RGB.
|
277 |
+
data_format (`ChannelDimension`, *optional*, defaults to `ChannelDimension.FIRST`):
|
278 |
+
The channel dimension format for the output image. Can be one of:
|
279 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
280 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
281 |
+
- Unset: Use the channel dimension format of the input image.
|
282 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
283 |
+
The channel dimension format for the input image. Can be one of:
|
284 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
285 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
286 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
287 |
+
"""
|
288 |
+
images = make_list_of_images(images)
|
289 |
+
|
290 |
+
if do_convert_rgb:
|
291 |
+
images = [convert_to_rgb(image) for image in images]
|
292 |
+
|
293 |
+
# All transformations expect numpy arrays.
|
294 |
+
images = [to_numpy_array(image) for image in images]
|
295 |
+
|
296 |
+
if is_scaled_image(images[0]) and do_rescale:
|
297 |
+
logger.warning_once(
|
298 |
+
"It looks like you are trying to rescale already rescaled images. If the input"
|
299 |
+
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
|
300 |
+
)
|
301 |
+
if input_data_format is None:
|
302 |
+
# We assume that all images have the same channel dimension format.
|
303 |
+
input_data_format = infer_channel_dimension_format(images[0])
|
304 |
+
|
305 |
+
height, width = get_image_size(images[0], channel_dim=input_data_format)
|
306 |
+
resized_height, resized_width = height, width
|
307 |
+
processed_images = []
|
308 |
+
for image in images:
|
309 |
+
if do_resize:
|
310 |
+
resized_height, resized_width = target_size
|
311 |
+
image = resize(
|
312 |
+
image, size=(resized_height, resized_width), resample=resample, input_data_format=input_data_format
|
313 |
+
)
|
314 |
+
|
315 |
+
if do_rescale:
|
316 |
+
image = self.rescale(image, scale=rescale_factor, input_data_format=input_data_format)
|
317 |
+
|
318 |
+
if do_normalize:
|
319 |
+
image = self.normalize(
|
320 |
+
image=image, mean=image_mean, std=image_std, input_data_format=input_data_format
|
321 |
+
)
|
322 |
+
|
323 |
+
image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
|
324 |
+
processed_images.append(image)
|
325 |
+
|
326 |
+
patches = np.array(processed_images)
|
327 |
+
if data_format == ChannelDimension.LAST:
|
328 |
+
patches = patches.transpose(0, 3, 1, 2)
|
329 |
+
t = patches.shape[0]
|
330 |
+
channel = patches.shape[1]
|
331 |
+
grid_h, grid_w = resized_height // self.patch_size, resized_width // self.patch_size
|
332 |
+
patches = patches.reshape(
|
333 |
+
t,
|
334 |
+
channel,
|
335 |
+
grid_h // merge_size,
|
336 |
+
merge_size,
|
337 |
+
self.patch_size,
|
338 |
+
grid_w // merge_size,
|
339 |
+
merge_size,
|
340 |
+
self.patch_size,
|
341 |
+
)
|
342 |
+
patches = patches.transpose(0, 2, 5, 3, 6, 1, 4, 7)
|
343 |
+
flatten_patches = patches.reshape(
|
344 |
+
t * grid_h * grid_w, channel * self.patch_size * self.patch_size
|
345 |
+
)
|
346 |
+
|
347 |
+
return flatten_patches, (t, grid_h, grid_w)
|
348 |
+
|
349 |
+
def preprocess(
|
350 |
+
self,
|
351 |
+
images: ImageInput,
|
352 |
+
do_resize: bool = None,
|
353 |
+
resample: PILImageResampling = None,
|
354 |
+
do_rescale: bool = None,
|
355 |
+
rescale_factor: float = None,
|
356 |
+
do_normalize: bool = None,
|
357 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
358 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
359 |
+
do_convert_rgb: bool = None,
|
360 |
+
merge_size: Optional[Union[int, List[int]]] = None,
|
361 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
362 |
+
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
|
363 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
364 |
+
):
|
365 |
+
"""
|
366 |
+
Args:
|
367 |
+
images (`ImageInput`):
|
368 |
+
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
369 |
+
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
370 |
+
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
371 |
+
Whether to resize the image.
|
372 |
+
resample (`int`, *optional*, defaults to `self.resample`):
|
373 |
+
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
|
374 |
+
has an effect if `do_resize` is set to `True`.
|
375 |
+
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
376 |
+
Whether to rescale the image.
|
377 |
+
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
378 |
+
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
|
379 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
380 |
+
Whether to normalize the image.
|
381 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
382 |
+
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
|
383 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
384 |
+
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
|
385 |
+
`True`.
|
386 |
+
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
|
387 |
+
Whether to convert the image to RGB.
|
388 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
389 |
+
The type of tensors to return. Can be one of:
|
390 |
+
- Unset: Return a list of `np.ndarray`.
|
391 |
+
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
392 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
393 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
394 |
+
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
395 |
+
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
|
396 |
+
The channel dimension format for the output image. Can be one of:
|
397 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
398 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
399 |
+
- Unset: Use the channel dimension format of the input image.
|
400 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
401 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
402 |
+
from the input image. Can be one of:
|
403 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
404 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
405 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
406 |
+
|
407 |
+
"""
|
408 |
+
do_resize = do_resize if do_resize is not None else self.do_resize
|
409 |
+
resample = resample if resample is not None else self.resample
|
410 |
+
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
411 |
+
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
|
412 |
+
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
|
413 |
+
image_mean = image_mean if image_mean is not None else self.image_mean
|
414 |
+
image_std = image_std if image_std is not None else self.image_std
|
415 |
+
merge_size = merge_size if merge_size is not None else self.merge_size
|
416 |
+
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
|
417 |
+
|
418 |
+
images = make_batched_images(images)
|
419 |
+
|
420 |
+
if isinstance(merge_size, (list, tuple)):
|
421 |
+
assert len(merge_size) == len(images), "Merge size must be the same length as images."
|
422 |
+
merge_sizes = merge_size
|
423 |
+
else:
|
424 |
+
merge_sizes = [merge_size for _ in images]
|
425 |
+
|
426 |
+
if all(merge_size == merge_sizes[0] for merge_size in merge_sizes):
|
427 |
+
target_sizes = simple_batched_resize(
|
428 |
+
images,
|
429 |
+
factor=self.patch_size * merge_sizes[0],
|
430 |
+
min_tokens=self.min_tokens,
|
431 |
+
max_tokens=self.max_tokens,
|
432 |
+
input_data_format=input_data_format,
|
433 |
+
)
|
434 |
+
else:
|
435 |
+
target_sizes = batched_resize(
|
436 |
+
images,
|
437 |
+
factors=[self.patch_size * merge_size for merge_size in merge_sizes],
|
438 |
+
min_tokens=self.min_tokens,
|
439 |
+
max_tokens=self.max_tokens,
|
440 |
+
input_data_format=input_data_format,
|
441 |
+
)
|
442 |
+
|
443 |
+
pixel_values, grid_sizes = [], []
|
444 |
+
for image, merge_size, target_size in zip(images, merge_sizes, target_sizes):
|
445 |
+
patches, grid_size = self._preprocess(
|
446 |
+
image,
|
447 |
+
target_size=target_size,
|
448 |
+
merge_size=merge_size,
|
449 |
+
do_resize=do_resize,
|
450 |
+
resample=resample,
|
451 |
+
do_rescale=do_rescale,
|
452 |
+
rescale_factor=rescale_factor,
|
453 |
+
do_normalize=do_normalize,
|
454 |
+
image_mean=image_mean,
|
455 |
+
image_std=image_std,
|
456 |
+
data_format=data_format,
|
457 |
+
do_convert_rgb=do_convert_rgb,
|
458 |
+
input_data_format=input_data_format,
|
459 |
+
)
|
460 |
+
pixel_values.append(patches)
|
461 |
+
grid_sizes.append(grid_size)
|
462 |
+
|
463 |
+
pixel_values = np.concatenate(pixel_values, axis=0)
|
464 |
+
grid_sizes = np.array(grid_sizes)
|
465 |
+
merge_sizes = np.array(merge_sizes)
|
466 |
+
|
467 |
+
data = {
|
468 |
+
"pixel_values": pixel_values,
|
469 |
+
"grid_sizes": grid_sizes,
|
470 |
+
"merge_sizes": merge_sizes,
|
471 |
+
}
|
472 |
+
|
473 |
+
return BatchFeature(data=data, tensor_type=return_tensors)
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
preprocessor_config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoImageProcessor": "image_processing_videollama3.Videollama3ImageProcessor",
|
4 |
+
"AutoProcessor": "processing_videollama3.Videollama3Qwen2Processor"
|
5 |
+
},
|
6 |
+
"do_convert_rgb": true,
|
7 |
+
"do_normalize": true,
|
8 |
+
"do_rescale": true,
|
9 |
+
"do_resize": true,
|
10 |
+
"image_mean": [
|
11 |
+
0.5,
|
12 |
+
0.5,
|
13 |
+
0.5
|
14 |
+
],
|
15 |
+
"image_processor_type": "Videollama3ImageProcessor",
|
16 |
+
"image_std": [
|
17 |
+
0.5,
|
18 |
+
0.5,
|
19 |
+
0.5
|
20 |
+
],
|
21 |
+
"max_tokens": 16384,
|
22 |
+
"min_tokens": 16,
|
23 |
+
"patch_size": 14,
|
24 |
+
"processor_class": "Videollama3Qwen2Processor",
|
25 |
+
"resample": 3,
|
26 |
+
"rescale_factor": 0.00392156862745098
|
27 |
+
}
|
processing_videollama3.py
ADDED
@@ -0,0 +1,891 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Processor class for VideoLLaMA3."""
|
2 |
+
|
3 |
+
import copy
|
4 |
+
import importlib.util
|
5 |
+
import os
|
6 |
+
import os.path as osp
|
7 |
+
import warnings
|
8 |
+
from collections import defaultdict
|
9 |
+
from typing import Any, List, Union, Dict, Optional, Tuple, TypedDict
|
10 |
+
|
11 |
+
import cv2
|
12 |
+
import ffmpeg
|
13 |
+
import imageio
|
14 |
+
import json
|
15 |
+
import numpy as np
|
16 |
+
import torch
|
17 |
+
import transformers
|
18 |
+
from decord import VideoReader, cpu
|
19 |
+
from PIL import Image
|
20 |
+
from transformers.feature_extraction_utils import BatchFeature
|
21 |
+
from transformers.image_utils import ImageInput
|
22 |
+
from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack
|
23 |
+
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
|
24 |
+
|
25 |
+
try:
|
26 |
+
from . import image_processing_videollama3
|
27 |
+
from .image_processing_videollama3 import (
|
28 |
+
is_valid_image, is_valid_video,
|
29 |
+
)
|
30 |
+
except ModuleNotFoundError:
|
31 |
+
spec = importlib.util.spec_from_file_location(
|
32 |
+
"image_processing_videollama3",
|
33 |
+
osp.join(osp.dirname(__file__), "image_processing_videollama3.py"),
|
34 |
+
)
|
35 |
+
image_processing_videollama3 = importlib.util.module_from_spec(spec)
|
36 |
+
spec.loader.exec_module(image_processing_videollama3)
|
37 |
+
is_valid_image = getattr(image_processing_videollama3, "is_valid_image")
|
38 |
+
is_valid_video = getattr(image_processing_videollama3, "is_valid_video")
|
39 |
+
|
40 |
+
# constants
|
41 |
+
DEFAULT_IMAGE_TOKEN = "<image>"
|
42 |
+
IGNORE_INDEX = -100
|
43 |
+
|
44 |
+
# Type aliases
|
45 |
+
Conversation = List[Dict[str, Any]]
|
46 |
+
SingleImage = Union[Image.Image, np.ndarray, torch.Tensor]
|
47 |
+
SingleVideo = Union[List[SingleImage], np.ndarray, torch.Tensor]
|
48 |
+
BatchedImage = List[Union[SingleImage, SingleVideo]]
|
49 |
+
BatchedNamedImage = List[Tuple[str, Union[SingleImage, SingleVideo]]]
|
50 |
+
|
51 |
+
|
52 |
+
def _custom_import(class_name: str):
|
53 |
+
try:
|
54 |
+
attribute_class = getattr(transformers, class_name)
|
55 |
+
except AttributeError:
|
56 |
+
attribute_class = getattr(image_processing_videollama3, class_name)
|
57 |
+
return attribute_class
|
58 |
+
|
59 |
+
|
60 |
+
def is_named_image(image) -> bool:
|
61 |
+
return isinstance(image, (list, tuple)) and \
|
62 |
+
len(image) == 2 and \
|
63 |
+
isinstance(image[0], str) and \
|
64 |
+
image[0] in ["image", "video"] and \
|
65 |
+
(is_valid_image(image[1]) or is_valid_video(image[1]))
|
66 |
+
|
67 |
+
|
68 |
+
def make_batched_images(images) -> List[List[ImageInput]]:
|
69 |
+
if isinstance(images, (list, tuple)) and all(is_named_image(image) for image in images):
|
70 |
+
# list of named images
|
71 |
+
return [image[0] for image in images], [image[1] for image in images]
|
72 |
+
elif isinstance(images, (list, tuple)) and all(is_valid_image(image) or is_valid_video(image) for image in images):
|
73 |
+
# list of images/videos
|
74 |
+
batch = []
|
75 |
+
for image in images:
|
76 |
+
if is_valid_video(image):
|
77 |
+
batch.append(("video", image))
|
78 |
+
elif is_valid_image(image):
|
79 |
+
batch.append(("image", image))
|
80 |
+
else:
|
81 |
+
raise ValueError(f"Could not make batched images from {images}")
|
82 |
+
return [x[0] for x in batch], [x[1] for x in batch]
|
83 |
+
elif is_named_image(images):
|
84 |
+
# named images
|
85 |
+
return [images[0]], [image[1]]
|
86 |
+
elif is_valid_video(images):
|
87 |
+
# single video
|
88 |
+
return ["video"], [images]
|
89 |
+
elif is_valid_image(images):
|
90 |
+
# single image
|
91 |
+
return ["image"], [images]
|
92 |
+
|
93 |
+
raise ValueError(f"Could not make batched images from {images}")
|
94 |
+
|
95 |
+
|
96 |
+
def frame_sample(duration, mode='uniform', num_frames=None, vid_fps=None, fps=None):
|
97 |
+
if mode == 'uniform':
|
98 |
+
assert num_frames is not None, "Number of frames must be provided for uniform sampling."
|
99 |
+
if duration <= num_frames:
|
100 |
+
return np.arange(duration).astype(int)
|
101 |
+
# NOTE: v1 version
|
102 |
+
# Calculate the size of each segment from which a frame will be extracted
|
103 |
+
# if duration <= num_frames:
|
104 |
+
# return np.arange(duration).astype(int)
|
105 |
+
# seg_size = float(duration - 1) / num_frames
|
106 |
+
|
107 |
+
# frame_ids = []
|
108 |
+
# for i in range(num_frames):
|
109 |
+
# # Calculate the start and end indices of each segment
|
110 |
+
# start = seg_size * i
|
111 |
+
# end = seg_size * (i + 1)
|
112 |
+
# # Append the middle index of the segment to the list
|
113 |
+
# frame_ids.append((start + end) / 2)
|
114 |
+
|
115 |
+
# return np.round(np.array(frame_ids) + 1e-6).astype(int)
|
116 |
+
# NOTE: v0 version
|
117 |
+
return np.linspace(0, duration-1, num_frames, dtype=int)
|
118 |
+
elif mode == 'fps':
|
119 |
+
assert vid_fps is not None, "FPS must be provided for FPS sampling."
|
120 |
+
assert fps is not None, "FPS must be provided for FPS sampling."
|
121 |
+
segment_len = min(vid_fps // fps, duration)
|
122 |
+
return np.arange(segment_len // 2, duration, segment_len, dtype=int)
|
123 |
+
else:
|
124 |
+
raise ImportError(f'Unsupported frame sampling mode: {mode}')
|
125 |
+
|
126 |
+
|
127 |
+
def load_video_from_ids(video_path, s=None, e=None, fps=None, max_frames=128, temporal_factor=1):
|
128 |
+
if s is not None and e is not None:
|
129 |
+
s = s if s >= 0. else 0.
|
130 |
+
e = e if e >= 0. else 0.
|
131 |
+
if s > e:
|
132 |
+
s, e = e, s
|
133 |
+
elif s == e:
|
134 |
+
e = s + 1
|
135 |
+
|
136 |
+
# 1. Loading Video
|
137 |
+
if os.path.isdir(video_path):
|
138 |
+
frame_files = sorted(os.listdir(video_path))
|
139 |
+
|
140 |
+
vid_fps = 3
|
141 |
+
num_frames_of_video = len(frame_files)
|
142 |
+
elif video_path.endswith('.gif'):
|
143 |
+
gif_reader = imageio.get_reader(video_path)
|
144 |
+
|
145 |
+
vid_fps = 25
|
146 |
+
num_frames_of_video = len(gif_reader)
|
147 |
+
else:
|
148 |
+
vreader = VideoReader(video_path, ctx=cpu(0), num_threads=2)
|
149 |
+
# vreader = VideoReader(video_path, ctx=cpu(0), num_threads=1)
|
150 |
+
|
151 |
+
vid_fps = vreader.get_avg_fps()
|
152 |
+
num_frames_of_video = len(vreader)
|
153 |
+
|
154 |
+
# 2. Determine frame range & Calculate frame indices
|
155 |
+
f_start = 0 if s is None else max(int(s * vid_fps) - 1, 0)
|
156 |
+
f_end = num_frames_of_video - 1 if e is None else min(int(e * vid_fps) - 1, num_frames_of_video - 1)
|
157 |
+
frame_indices = list(range(f_start, f_end + 1))
|
158 |
+
|
159 |
+
duration = len(frame_indices)
|
160 |
+
# 3. Sampling frame indices
|
161 |
+
if fps is not None and duration / vid_fps < max_frames:
|
162 |
+
sampled_frame_indices = [frame_indices[i] for i in frame_sample(duration, mode='fps', vid_fps=vid_fps, fps=fps)]
|
163 |
+
else:
|
164 |
+
sampled_frame_indices = [frame_indices[i] for i in frame_sample(duration, mode='uniform', num_frames=max_frames)]
|
165 |
+
|
166 |
+
# 4. Acquire frame data
|
167 |
+
if os.path.isdir(video_path):
|
168 |
+
frames = np.array([cv2.cvtColor(cv2.imread(os.path.join(video_path, frame_files[frame_idx])), cv2.COLOR_BGR2RGB) for frame_idx in sampled_frame_indices])
|
169 |
+
elif video_path.endswith('.gif'):
|
170 |
+
frames = np.array([cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB) for idx, frame in enumerate(gif_reader) if idx in sampled_frame_indices])
|
171 |
+
else:
|
172 |
+
frames = vreader.get_batch(sampled_frame_indices).asnumpy()
|
173 |
+
|
174 |
+
frames = frames.transpose(0, 3, 1, 2)
|
175 |
+
timestamps = [x / vid_fps for x in sampled_frame_indices]
|
176 |
+
|
177 |
+
if temporal_factor > 1:
|
178 |
+
pad_length = temporal_factor - len(frames) % temporal_factor
|
179 |
+
frames = np.concatenate([frames, frames[-1:].repeat(pad_length, axis=0)])
|
180 |
+
[timestamps.append(timestamps[-1] + 1 / fps) for _ in range(pad_length)]
|
181 |
+
|
182 |
+
frames = [frame for frame in frames]
|
183 |
+
|
184 |
+
return frames, timestamps
|
185 |
+
|
186 |
+
|
187 |
+
class ChatTemplateKwargs(TypedDict, total=False):
|
188 |
+
|
189 |
+
chat_template: Optional[str]
|
190 |
+
add_system_prompt: Optional[bool]
|
191 |
+
add_generation_prompt: Optional[bool]
|
192 |
+
|
193 |
+
|
194 |
+
class Videollama3Qwen2ProcessorKwargs(ProcessingKwargs, ChatTemplateKwargs, total=False):
|
195 |
+
|
196 |
+
chat_template_kwargs: ChatTemplateKwargs = {
|
197 |
+
**ChatTemplateKwargs.__annotations__,
|
198 |
+
}
|
199 |
+
|
200 |
+
_defaults = {
|
201 |
+
"text_kwargs": {
|
202 |
+
"padding": False,
|
203 |
+
},
|
204 |
+
"image_kwargs": {
|
205 |
+
"merge_size": None,
|
206 |
+
},
|
207 |
+
"chat_template_kwargs": {
|
208 |
+
"chat_template": None,
|
209 |
+
"add_system_prompt": False,
|
210 |
+
"add_generation_prompt": False,
|
211 |
+
},
|
212 |
+
}
|
213 |
+
|
214 |
+
|
215 |
+
class Videollama3Qwen2Processor(ProcessorMixin):
|
216 |
+
|
217 |
+
attributes = ["image_processor", "tokenizer"]
|
218 |
+
image_processor_class = "Videollama3ImageProcessor"
|
219 |
+
tokenizer_class = ("Qwen2Tokenizer", "Qwen2TokenizerFast")
|
220 |
+
valid_kwargs = ["chat_template", "image_merge_size", "video_merge_size", "fps", "max_frames"]
|
221 |
+
|
222 |
+
def __init__(
|
223 |
+
self,
|
224 |
+
image_processor=None,
|
225 |
+
tokenizer=None,
|
226 |
+
chat_template: str = None,
|
227 |
+
image_merge_size: int = 1,
|
228 |
+
video_merge_size: int = 2,
|
229 |
+
fps: Optional[int] = 1,
|
230 |
+
max_frames: Optional[int] = 128,
|
231 |
+
):
|
232 |
+
self.image_processor = image_processor
|
233 |
+
self.tokenizer = tokenizer
|
234 |
+
if chat_template is None:
|
235 |
+
chat_template = self.tokenizer.chat_template
|
236 |
+
self.chat_template = chat_template
|
237 |
+
|
238 |
+
self.image_merge_size = image_merge_size
|
239 |
+
self.video_merge_size = video_merge_size
|
240 |
+
self.fps = fps
|
241 |
+
self.max_frames = max_frames
|
242 |
+
|
243 |
+
self.generation_prompt = self._infer_generation_prompt()
|
244 |
+
self.generation_prompt_ids = self.tokenizer.encode(self.generation_prompt, return_tensors="pt")
|
245 |
+
self.generation_prompt_length = len(self.generation_prompt_ids[0])
|
246 |
+
self.image_token_id = self.tokenizer.convert_tokens_to_ids(DEFAULT_IMAGE_TOKEN)
|
247 |
+
self.eos_token_id = self.tokenizer.eos_token_id
|
248 |
+
|
249 |
+
@classmethod
|
250 |
+
def _get_arguments_from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
|
251 |
+
args = []
|
252 |
+
for attribute_name in cls.attributes:
|
253 |
+
class_name = getattr(cls, f"{attribute_name}_class")
|
254 |
+
if isinstance(class_name, tuple):
|
255 |
+
classes = tuple(_custom_import(n) if n is not None else None for n in class_name)
|
256 |
+
use_fast = kwargs.get("use_fast", True)
|
257 |
+
if use_fast and classes[1] is not None:
|
258 |
+
attribute_class = classes[1]
|
259 |
+
else:
|
260 |
+
attribute_class = classes[0]
|
261 |
+
else:
|
262 |
+
attribute_class = _custom_import(class_name)
|
263 |
+
|
264 |
+
args.append(attribute_class.from_pretrained(pretrained_model_name_or_path, **kwargs))
|
265 |
+
return args
|
266 |
+
|
267 |
+
def get_generation_prompt(self):
|
268 |
+
return self.generation_prompt
|
269 |
+
|
270 |
+
def get_generation_prompt_ids(self):
|
271 |
+
return self.generation_prompt_ids
|
272 |
+
|
273 |
+
def _infer_generation_prompt(self):
|
274 |
+
pseudo_message = [{"role": "user", "content": ""}]
|
275 |
+
instruction = self.apply_chat_template(pseudo_message, tokenize=False, add_generation_prompt=True)
|
276 |
+
conversation = self.apply_chat_template(pseudo_message, tokenize=False, add_generation_prompt=False)
|
277 |
+
return instruction.replace(conversation, "")
|
278 |
+
|
279 |
+
def _get_downsampled_grid_sizes(self, image_inputs: Dict[str, Any]):
|
280 |
+
grid_sizes = []
|
281 |
+
for grid_size, merge_size in zip(image_inputs.get("grid_sizes", []), image_inputs.get("merge_sizes", [])):
|
282 |
+
if not torch.all(grid_size[1:] % merge_size == 0):
|
283 |
+
warnings.warn(f"Grid size {grid_size} is not divisible by merge size. Some undesired errors may occur.")
|
284 |
+
if grid_size[0] == 1:
|
285 |
+
grid_sizes.append(grid_size[1:] / merge_size)
|
286 |
+
elif grid_size[0] > 1:
|
287 |
+
grid_sizes.extend([grid_size[1:] / merge_size] * grid_size[0])
|
288 |
+
return grid_sizes
|
289 |
+
|
290 |
+
def _get_visual_seq_len(self, grid_size: torch.Tensor):
|
291 |
+
num_tokens = int(grid_size.prod().item())
|
292 |
+
return num_tokens
|
293 |
+
|
294 |
+
def load_images(self, image_path: Union[str, List[str], Image.Image, List[Image.Image]]):
|
295 |
+
if isinstance(image_path, str) and os.path.isfile(image_path):
|
296 |
+
# images = [cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)]
|
297 |
+
images = [Image.open(image_path).convert('RGB')]
|
298 |
+
elif isinstance(image_path, str) and os.path.isdir(image_path):
|
299 |
+
# images = [cv2.cvtColor(cv2.imread(os.path.join(image_path, f)), cv2.COLOR_BGR2RGB) for f in sorted(os.listdir(image_path))]
|
300 |
+
images = [Image.open(os.path.join(image_path, f)).convert('RGB') for f in sorted(os.listdir(image_path))]
|
301 |
+
elif isinstance(image_path, list) and isinstance(image_path[0], str):
|
302 |
+
# images = [cv2.cvtColor(cv2.imread(f), cv2.COLOR_BGR2RGB) for f in image_path]
|
303 |
+
images = [Image.open(f).convert('RGB') for f in image_path]
|
304 |
+
elif isinstance(image_path, list) and isinstance(image_path[0], Image.Image):
|
305 |
+
images = [np.array(x) for x in image_path]
|
306 |
+
elif isinstance(image_path, Image.Image):
|
307 |
+
images = [np.array(image_path)]
|
308 |
+
else:
|
309 |
+
raise ValueError(f"Unsupported image path type: {type(image_path)}")
|
310 |
+
return images
|
311 |
+
|
312 |
+
def load_video(
|
313 |
+
self,
|
314 |
+
video_path: str,
|
315 |
+
start_time: Optional[float] = None,
|
316 |
+
end_time: Optional[float] = None,
|
317 |
+
fps: Optional[float] = None,
|
318 |
+
max_frames: Optional[float] = None,
|
319 |
+
size: Optional[int] = None,
|
320 |
+
size_divisible: int = 1,
|
321 |
+
precise_time: bool = False,
|
322 |
+
verbose: bool = False,
|
323 |
+
temporal_factor: int = 1
|
324 |
+
):
|
325 |
+
"""
|
326 |
+
Load and process a video file and return the frames and the timestamps of each frame.
|
327 |
+
|
328 |
+
Args:
|
329 |
+
video_path (str): Path to the video file.
|
330 |
+
start_time (float, optional): Start time in seconds. Defaults to None.
|
331 |
+
end_time (float, optional): End time in seconds. Defaults to None.
|
332 |
+
fps (float, optional): Frames per second. Defaults to None.
|
333 |
+
num_frames (float, optional): Number of frames to sample. Defaults to None.
|
334 |
+
size (int, optional): Size of the shortest side. Defaults to None.
|
335 |
+
size_divisible (int, optional): Size divisible by this number. Defaults to 1.
|
336 |
+
precise_time (bool, optional): Whether to use precise time. Defaults to False.
|
337 |
+
verbose (bool, optional): Print ffmpeg output. Defaults to False.
|
338 |
+
|
339 |
+
Returns:
|
340 |
+
frames (List[PIL.Image]): List of frames.
|
341 |
+
timestamps (List[float]): List of timestamps.
|
342 |
+
"""
|
343 |
+
fps = self.fps if fps is None else fps
|
344 |
+
max_frames = self.max_frames if max_frames is None else max_frames
|
345 |
+
|
346 |
+
if start_time is not None and end_time is not None and end_time - start_time < 1:
|
347 |
+
return load_video_from_ids(video_path, start_time, end_time, fps=fps, max_frames=max_frames)
|
348 |
+
if os.path.isdir(video_path):
|
349 |
+
return load_video_from_ids(video_path, start_time, end_time, fps=fps, max_frames=max_frames)
|
350 |
+
if video_path.endswith('.gif'):
|
351 |
+
return load_video_from_ids(video_path, start_time, end_time, fps=fps, max_frames=max_frames)
|
352 |
+
probe = ffmpeg.probe(video_path)
|
353 |
+
duration = float(probe['format']['duration'])
|
354 |
+
video_stream = next((stream for stream in probe['streams'] if stream['codec_type'] == 'video'), None)
|
355 |
+
w, h = int(video_stream['width']), int(video_stream['height'])
|
356 |
+
|
357 |
+
kwargs, input_kwargs, output_kwargs = {}, {}, {}
|
358 |
+
do_trim = start_time is not None or end_time is not None
|
359 |
+
if start_time is not None:
|
360 |
+
new_start_time = max(float(video_stream['start_time']), start_time)
|
361 |
+
duration -= new_start_time - start_time
|
362 |
+
start_time = new_start_time
|
363 |
+
else:
|
364 |
+
start_time = float(video_stream['start_time'])
|
365 |
+
if end_time is not None:
|
366 |
+
duration = min(duration, end_time - start_time)
|
367 |
+
else:
|
368 |
+
duration = duration
|
369 |
+
if do_trim:
|
370 |
+
kwargs = {'ss': start_time, 't': duration}
|
371 |
+
if precise_time:
|
372 |
+
output_kwargs.update(kwargs)
|
373 |
+
else:
|
374 |
+
input_kwargs.update(kwargs)
|
375 |
+
|
376 |
+
if size is not None:
|
377 |
+
scale_factor = size / min(w, h)
|
378 |
+
new_w, new_h = round(w * scale_factor), round(h * scale_factor)
|
379 |
+
else:
|
380 |
+
new_w, new_h = w, h
|
381 |
+
new_w = new_w // size_divisible * size_divisible
|
382 |
+
new_h = new_h // size_divisible * size_divisible
|
383 |
+
|
384 |
+
# NOTE: It may result in unexpected number of frames in ffmpeg
|
385 |
+
# if calculate the fps directly according to max_frames
|
386 |
+
# if max_frames is not None and (fps is None or duration * fps > 2 * max_frames):
|
387 |
+
# fps = round(max_frames / duration * 2)
|
388 |
+
|
389 |
+
stream = ffmpeg.input(video_path, **input_kwargs)
|
390 |
+
if fps is not None:
|
391 |
+
stream = ffmpeg.filter(stream, "fps", fps=fps, round="down")
|
392 |
+
if new_w != w or new_h != h:
|
393 |
+
stream = ffmpeg.filter(stream, 'scale', new_w, new_h)
|
394 |
+
stream = ffmpeg.output(stream, "pipe:", format="rawvideo", pix_fmt="rgb24", **output_kwargs)
|
395 |
+
out, _ = ffmpeg.run(stream, capture_stdout=True, quiet=not verbose)
|
396 |
+
|
397 |
+
frames = np.frombuffer(out, np.uint8).reshape([-1, new_h, new_w, 3]).transpose([0, 3, 1, 2])
|
398 |
+
|
399 |
+
if fps is not None:
|
400 |
+
timestamps = np.arange(start_time, start_time + duration + 1 / fps, 1 / fps)[:len(frames)]
|
401 |
+
else:
|
402 |
+
timestamps = np.linspace(start_time, start_time + duration, len(frames))
|
403 |
+
|
404 |
+
if max_frames is not None and len(frames) > max_frames:
|
405 |
+
indices = np.linspace(0, len(frames) - 1, max_frames, dtype=int)
|
406 |
+
frames = frames[indices]
|
407 |
+
timestamps = timestamps[indices]
|
408 |
+
|
409 |
+
if temporal_factor > 1:
|
410 |
+
pad_length = temporal_factor - len(frames) % temporal_factor
|
411 |
+
frames = np.concatenate([frames, frames[-1:].repeat(pad_length, axis=0)])
|
412 |
+
timestamps = np.concatenate([timestamps, timestamps[-1:].repeat(pad_length) + np.arange(1, pad_length + 1) / fps])
|
413 |
+
|
414 |
+
frames = [frame for frame in frames]
|
415 |
+
timestamps = [timestamp for timestamp in timestamps]
|
416 |
+
|
417 |
+
return frames, timestamps
|
418 |
+
|
419 |
+
def _load_multimodal_data(self, conversation: Conversation):
|
420 |
+
multimodal_info = defaultdict(list)
|
421 |
+
new_conversation = []
|
422 |
+
for message in conversation:
|
423 |
+
new_message = {"role": message["role"]}
|
424 |
+
if not isinstance(message["content"], (list, tuple)):
|
425 |
+
new_message["content"] = message["content"]
|
426 |
+
new_conversation.append(new_message)
|
427 |
+
continue
|
428 |
+
|
429 |
+
new_contents = []
|
430 |
+
for content in message["content"]:
|
431 |
+
if not isinstance(content, dict):
|
432 |
+
new_contents.append(content)
|
433 |
+
continue
|
434 |
+
assert "type" in content, "Content must have 'type' field."
|
435 |
+
if content["type"] in ["image", "video"] and content["type"] in content and isinstance(content[content["type"]], dict):
|
436 |
+
# TODO: support other types which are not compatible with json
|
437 |
+
load_args = content[content["type"]]
|
438 |
+
data_id = json.dumps({k: v for k, v in load_args.items() if not k in ["start_time", "end_time"]})
|
439 |
+
new_content = copy.deepcopy(content)
|
440 |
+
multimodal_info[data_id].append(new_content)
|
441 |
+
new_contents.append(new_content)
|
442 |
+
else:
|
443 |
+
new_contents.append(content)
|
444 |
+
|
445 |
+
new_message["content"] = new_contents
|
446 |
+
new_conversation.append(new_message)
|
447 |
+
|
448 |
+
for data_id, contents in multimodal_info.items():
|
449 |
+
data_type = contents[0]["type"]
|
450 |
+
if data_type == "image":
|
451 |
+
image = self.load_images(contents[0][data_type]["image_path"])[0]
|
452 |
+
for content in contents:
|
453 |
+
content["image"] = [image.copy()]
|
454 |
+
|
455 |
+
elif data_type == "video":
|
456 |
+
# TODO: start_time is None?
|
457 |
+
start_times = [content["video"].get("start_time", 0.) for content in contents]
|
458 |
+
end_times = [content["video"].get("end_time", float("inf")) for content in contents]
|
459 |
+
|
460 |
+
load_args = contents[0][data_type]
|
461 |
+
start_time, end_time = min(start_times), max(end_times)
|
462 |
+
if start_time > 0:
|
463 |
+
load_args["start_time"] = start_time
|
464 |
+
if end_time < float("inf"):
|
465 |
+
load_args["end_time"] = end_time
|
466 |
+
images, timestamps = self.load_video(**load_args)
|
467 |
+
|
468 |
+
for content, start_time, end_time in zip(contents, start_times, end_times):
|
469 |
+
cur_images, cur_timestamps = [], []
|
470 |
+
for image, timestamp in zip(images, timestamps):
|
471 |
+
if start_time <= timestamp <= end_time:
|
472 |
+
cur_images.append(image.copy())
|
473 |
+
cur_timestamps.append(timestamp)
|
474 |
+
|
475 |
+
content[data_type] = cur_images
|
476 |
+
content["num_frames"] = len(cur_images)
|
477 |
+
content["timestamps"] = cur_timestamps
|
478 |
+
|
479 |
+
return new_conversation
|
480 |
+
|
481 |
+
def _gather_multimodal_data(self, conversation: Conversation):
|
482 |
+
images = []
|
483 |
+
for message in conversation:
|
484 |
+
if not isinstance(message["content"], (list, tuple)):
|
485 |
+
continue
|
486 |
+
for content in message["content"]:
|
487 |
+
if not isinstance(content, dict):
|
488 |
+
continue
|
489 |
+
if content["type"] == "video":
|
490 |
+
video = content["video"]
|
491 |
+
assert is_valid_video(video), f"Invalid video data: {video}."
|
492 |
+
images.append(("video", video))
|
493 |
+
if content["type"] == "image":
|
494 |
+
image = content["image"]
|
495 |
+
images.append(("image", image))
|
496 |
+
images = images if len(images) > 0 else None
|
497 |
+
return images
|
498 |
+
|
499 |
+
def _process_conversation_with_label(
|
500 |
+
self,
|
501 |
+
conversation: Conversation,
|
502 |
+
image_inputs: Dict[str, Any],
|
503 |
+
**kwargs,
|
504 |
+
):
|
505 |
+
assert kwargs.pop("return_tensors", "pt") == "pt", "Only PyTorch tensors are supported when return_labels=True."
|
506 |
+
assert not "add_generation_prompt" in kwargs, "'add_generation_prompt' argument is not supported when return_labels=True."
|
507 |
+
|
508 |
+
output_kwargs = self._merge_kwargs(
|
509 |
+
Videollama3Qwen2ProcessorKwargs,
|
510 |
+
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
|
511 |
+
**kwargs,
|
512 |
+
)
|
513 |
+
output_kwargs["chat_template_kwargs"].pop("add_generation_prompt")
|
514 |
+
|
515 |
+
grid_sizes = self._get_downsampled_grid_sizes(image_inputs)
|
516 |
+
text_inputs = {"input_ids": [], "labels": []}
|
517 |
+
sample_types_list = []
|
518 |
+
image_idx = 0
|
519 |
+
|
520 |
+
for message_idx, message in enumerate(conversation):
|
521 |
+
prompt = self.apply_chat_template(
|
522 |
+
[message],
|
523 |
+
tokenize=False,
|
524 |
+
add_generation_prompt=False,
|
525 |
+
**output_kwargs["chat_template_kwargs"],
|
526 |
+
)
|
527 |
+
prompt_chunks = prompt.split(DEFAULT_IMAGE_TOKEN)
|
528 |
+
prompt = []
|
529 |
+
for chunk_idx in range(len(prompt_chunks) - 1):
|
530 |
+
prompt.append(prompt_chunks[chunk_idx])
|
531 |
+
num_tokens = self._get_visual_seq_len(grid_sizes[image_idx])
|
532 |
+
prompt.append(DEFAULT_IMAGE_TOKEN * num_tokens)
|
533 |
+
image_idx += 1
|
534 |
+
prompt.append(prompt_chunks[-1])
|
535 |
+
prompt = "".join(prompt)
|
536 |
+
|
537 |
+
# TODO: support attention_mask, position_ids, etc.
|
538 |
+
input_ids = self.tokenizer.encode(prompt, return_tensors="pt", **output_kwargs["text_kwargs"])[0]
|
539 |
+
text_inputs["input_ids"].append(input_ids)
|
540 |
+
|
541 |
+
targets = torch.full_like(input_ids, IGNORE_INDEX)
|
542 |
+
sample_types = torch.full_like(input_ids, IGNORE_INDEX)
|
543 |
+
if message["role"] == "assistant":
|
544 |
+
targets[self.generation_prompt_length:-1] = input_ids[self.generation_prompt_length:-1].clone()
|
545 |
+
# elif message["role"] == "stream":
|
546 |
+
# diff = torch.diff((input_ids == self.image_token_id).float())
|
547 |
+
# image_end_indices = torch.nonzero(diff < 0)[:, 0]
|
548 |
+
# targets[image_end_indices + 1] = input_ids[image_end_indices + 1]
|
549 |
+
# sample_types = targets.clone()
|
550 |
+
# sample_types[torch.logical_and(sample_types > 0, sample_types != self.eos_token_id)] = 0
|
551 |
+
# targets[-2] = input_ids[-2] # <|im_end|>
|
552 |
+
|
553 |
+
if message_idx > 0 and conversation[message_idx - 1]["role"] == "stream":
|
554 |
+
targets[0] = input_ids[0]
|
555 |
+
# TODO: consider non-special tokens
|
556 |
+
sample_types[0] = input_ids[0]
|
557 |
+
|
558 |
+
text_inputs["labels"].append(targets)
|
559 |
+
sample_types_list.append(sample_types)
|
560 |
+
|
561 |
+
# Negative sampling for streaming data
|
562 |
+
text_inputs = {k: torch.cat(v) for k, v in text_inputs.items()}
|
563 |
+
sample_types = torch.cat(sample_types_list)
|
564 |
+
types, counts = torch.unique(sample_types[sample_types > -1], return_counts=True)
|
565 |
+
|
566 |
+
if len(types) > 0:
|
567 |
+
target_num_samples = counts.amin()
|
568 |
+
for type_id, type_count in zip(types, counts):
|
569 |
+
if type_count > target_num_samples:
|
570 |
+
indices = torch.nonzero(sample_types == type_id)[:, 0]
|
571 |
+
random_selector = torch.randperm(indices.size(0))[:-target_num_samples]
|
572 |
+
text_inputs["labels"][indices[random_selector]] = IGNORE_INDEX
|
573 |
+
# sample_types[indices[random_selector]] = -1
|
574 |
+
|
575 |
+
assert len(grid_sizes) == image_idx, "Number of images does not match the number of image tokens in the text."
|
576 |
+
|
577 |
+
return text_inputs
|
578 |
+
|
579 |
+
def _process_conversation_without_label(
|
580 |
+
self,
|
581 |
+
conversation: Conversation,
|
582 |
+
image_inputs: Dict[str, Any],
|
583 |
+
**kwargs,
|
584 |
+
):
|
585 |
+
output_kwargs = self._merge_kwargs(
|
586 |
+
Videollama3Qwen2ProcessorKwargs,
|
587 |
+
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
|
588 |
+
**kwargs,
|
589 |
+
)
|
590 |
+
prompt = self.apply_chat_template(
|
591 |
+
conversation,
|
592 |
+
tokenize=False,
|
593 |
+
**output_kwargs["chat_template_kwargs"],
|
594 |
+
)
|
595 |
+
return self.process_text(prompt, image_inputs, **output_kwargs["text_kwargs"])
|
596 |
+
|
597 |
+
def _process_conversation(
|
598 |
+
self,
|
599 |
+
conversation: Conversation,
|
600 |
+
images: Optional[Union[BatchedImage, BatchedNamedImage]] = None,
|
601 |
+
return_labels: bool = False,
|
602 |
+
**kwargs: Unpack[Videollama3Qwen2ProcessorKwargs],
|
603 |
+
) -> BatchFeature:
|
604 |
+
assert isinstance(conversation, list), "Conversation must be a list of messages."
|
605 |
+
|
606 |
+
if images is None:
|
607 |
+
conversation = self._load_multimodal_data(conversation)
|
608 |
+
images = self._gather_multimodal_data(conversation)
|
609 |
+
|
610 |
+
output_kwargs = self._merge_kwargs(
|
611 |
+
Videollama3Qwen2ProcessorKwargs,
|
612 |
+
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
|
613 |
+
**kwargs,
|
614 |
+
)
|
615 |
+
|
616 |
+
if images is not None:
|
617 |
+
image_inputs = self.process_images(images, **output_kwargs["images_kwargs"])
|
618 |
+
else:
|
619 |
+
image_inputs = {}
|
620 |
+
|
621 |
+
if return_labels:
|
622 |
+
text_inputs = self._process_conversation_with_label(conversation, image_inputs, **kwargs)
|
623 |
+
else:
|
624 |
+
text_inputs = self._process_conversation_without_label(conversation, image_inputs, **kwargs)
|
625 |
+
|
626 |
+
return BatchFeature(data={**text_inputs, **image_inputs})
|
627 |
+
|
628 |
+
def _process_plain(
|
629 |
+
self,
|
630 |
+
text: Union[TextInput, PreTokenizedInput] = None,
|
631 |
+
images: Optional[Union[BatchedImage, BatchedNamedImage]] = None,
|
632 |
+
return_labels: bool = False,
|
633 |
+
**kwargs: Unpack[Videollama3Qwen2ProcessorKwargs],
|
634 |
+
) -> BatchFeature:
|
635 |
+
if text is None:
|
636 |
+
raise ValueError("You must provide 'text' or 'message'.")
|
637 |
+
if return_labels:
|
638 |
+
raise ValueError("return_labels is not supported for plain text processing.")
|
639 |
+
|
640 |
+
output_kwargs = self._merge_kwargs(
|
641 |
+
Videollama3Qwen2ProcessorKwargs,
|
642 |
+
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
|
643 |
+
**kwargs,
|
644 |
+
)
|
645 |
+
|
646 |
+
if images is not None:
|
647 |
+
image_inputs = self.process_images(images, **output_kwargs["images_kwargs"])
|
648 |
+
else:
|
649 |
+
image_inputs = {}
|
650 |
+
|
651 |
+
text_inputs = self.process_text(text, image_inputs, **output_kwargs["text_kwargs"])
|
652 |
+
|
653 |
+
return BatchFeature(data={**text_inputs, **image_inputs})
|
654 |
+
|
655 |
+
def process_images(self, images: Union[BatchedImage, BatchedNamedImage], **kwargs):
|
656 |
+
modals, images = make_batched_images(images)
|
657 |
+
if not "merge_size" in kwargs:
|
658 |
+
kwargs["merge_size"] = [
|
659 |
+
self.image_merge_size if modal == "image" else self.video_merge_size
|
660 |
+
for modal in modals
|
661 |
+
]
|
662 |
+
image_inputs = self.image_processor(images=images, **kwargs)
|
663 |
+
image_inputs["modals"] = modals
|
664 |
+
return image_inputs
|
665 |
+
|
666 |
+
def process_text(
|
667 |
+
self,
|
668 |
+
text: TextInput,
|
669 |
+
image_inputs: Dict[str, Any],
|
670 |
+
**kwargs,
|
671 |
+
):
|
672 |
+
grid_sizes = self._get_downsampled_grid_sizes(image_inputs)
|
673 |
+
|
674 |
+
kwargs.pop("padding")
|
675 |
+
kwargs.pop("padding_side")
|
676 |
+
|
677 |
+
image_idx = 0
|
678 |
+
while DEFAULT_IMAGE_TOKEN in text:
|
679 |
+
num_tokens = self._get_visual_seq_len(grid_sizes[image_idx])
|
680 |
+
text = text.replace(DEFAULT_IMAGE_TOKEN, "<placeholder>" * num_tokens, 1)
|
681 |
+
image_idx += 1
|
682 |
+
text = text.replace("<placeholder>", DEFAULT_IMAGE_TOKEN)
|
683 |
+
|
684 |
+
assert len(grid_sizes) == image_idx, "Number of images does not match the number of image tokens in the text."
|
685 |
+
|
686 |
+
text_inputs = self.tokenizer(text, **kwargs)
|
687 |
+
return text_inputs
|
688 |
+
|
689 |
+
def __call__(
|
690 |
+
self,
|
691 |
+
text: Optional[TextInput] = None,
|
692 |
+
conversation: Optional[Conversation] = None,
|
693 |
+
images: Optional[Union[BatchedImage, BatchedNamedImage]] = None,
|
694 |
+
return_labels: bool = False,
|
695 |
+
**kwargs: Unpack[Videollama3Qwen2ProcessorKwargs],
|
696 |
+
) -> BatchFeature:
|
697 |
+
if conversation is not None:
|
698 |
+
if text is not None:
|
699 |
+
raise ValueError("You cannot provide 'message' with 'text'.")
|
700 |
+
return self._process_conversation(conversation, images, return_labels, **kwargs)
|
701 |
+
return self._process_plain(text, images, return_labels, **kwargs)
|
702 |
+
|
703 |
+
def batch_decode(self, *args, **kwargs):
|
704 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
705 |
+
|
706 |
+
def decode(self, *args, **kwargs):
|
707 |
+
return self.tokenizer.decode(*args, **kwargs)
|
708 |
+
|
709 |
+
def apply_chat_template(
|
710 |
+
self,
|
711 |
+
conversation: Conversation,
|
712 |
+
chat_template: Optional[str] = None,
|
713 |
+
tokenize: bool = False,
|
714 |
+
add_system_prompt: bool = False,
|
715 |
+
add_generation_prompt: bool = False,
|
716 |
+
image_token: Optional[str] = DEFAULT_IMAGE_TOKEN,
|
717 |
+
**kwargs,
|
718 |
+
) -> str:
|
719 |
+
"""
|
720 |
+
Similar to the `apply_chat_template` method on tokenizers, this method applies a Jinja template to input
|
721 |
+
conversations to turn them into a single tokenizable string.
|
722 |
+
|
723 |
+
Args:
|
724 |
+
conversation (`List[Dict, str, str]`):
|
725 |
+
The conversation to format.
|
726 |
+
chat_template (`Optional[str]`, *optional*):
|
727 |
+
The Jinja template to use for formatting the conversation. If not provided, the tokenizer's
|
728 |
+
chat template is used.
|
729 |
+
tokenize (`bool`, *optional*, defaults to `False`):
|
730 |
+
Whether to tokenize the output or not.
|
731 |
+
add_system_prompt (`bool`, *optional*, defaults to `False`):
|
732 |
+
Whether to add the system prompt to the output or not.
|
733 |
+
add_generation_prompt (`bool`, *optional*, defaults to `False`):
|
734 |
+
Whether to add the generation prompt to the output or not.
|
735 |
+
image_token (`Optional[str]`, *optional*, defaults to `<image>`):
|
736 |
+
The token to use for indicating images in the conversation.
|
737 |
+
**kwargs:
|
738 |
+
Additional keyword arguments
|
739 |
+
"""
|
740 |
+
|
741 |
+
if chat_template is None:
|
742 |
+
if self.chat_template is not None:
|
743 |
+
chat_template = self.chat_template
|
744 |
+
else:
|
745 |
+
raise ValueError(
|
746 |
+
"No chat template is set for this processor. Please either set the `chat_template` attribute, "
|
747 |
+
"or provide a chat template as an argument. See "
|
748 |
+
"https://huggingface.co/docs/transformers/main/en/chat_templating for more information."
|
749 |
+
)
|
750 |
+
return self.tokenizer.apply_chat_template(
|
751 |
+
conversation,
|
752 |
+
chat_template=chat_template,
|
753 |
+
tokenize=tokenize,
|
754 |
+
add_system_prompt=add_system_prompt,
|
755 |
+
add_generation_prompt=add_generation_prompt,
|
756 |
+
image_token=image_token,
|
757 |
+
**kwargs
|
758 |
+
)
|
759 |
+
|
760 |
+
@property
|
761 |
+
def model_input_names(self):
|
762 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
763 |
+
image_processor_input_names = self.image_processor.model_input_names
|
764 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) + ["modals"]
|
765 |
+
|
766 |
+
# modified from transformers.ProcessorMixin
|
767 |
+
def _merge_kwargs(
|
768 |
+
self,
|
769 |
+
ModelProcessorKwargs: ProcessingKwargs,
|
770 |
+
tokenizer_init_kwargs: Optional[Dict] = None,
|
771 |
+
**kwargs,
|
772 |
+
) -> Dict[str, Dict]:
|
773 |
+
"""
|
774 |
+
Method to merge dictionaries of kwargs cleanly separated by modality within a Processor instance.
|
775 |
+
The order of operations is as follows:
|
776 |
+
1) kwargs passed as before have highest priority to preserve BC.
|
777 |
+
```python
|
778 |
+
high_priority_kwargs = {"crop_size" = {"height": 222, "width": 222}, "padding" = "max_length"}
|
779 |
+
processor(..., **high_priority_kwargs)
|
780 |
+
```
|
781 |
+
2) kwargs passed as modality-specific kwargs have second priority. This is the recommended API.
|
782 |
+
```python
|
783 |
+
processor(..., text_kwargs={"padding": "max_length"}, images_kwargs={"crop_size": {"height": 222, "width": 222}}})
|
784 |
+
```
|
785 |
+
3) kwargs passed during instantiation of a modality processor have fourth priority.
|
786 |
+
```python
|
787 |
+
tokenizer = tokenizer_class(..., {"padding": "max_length"})
|
788 |
+
image_processor = image_processor_class(...)
|
789 |
+
processor(tokenizer, image_processor) # will pass max_length unless overriden by kwargs at call
|
790 |
+
```
|
791 |
+
4) defaults kwargs specified at processor level have lowest priority.
|
792 |
+
```python
|
793 |
+
class MyProcessingKwargs(ProcessingKwargs, CommonKwargs, TextKwargs, ImagesKwargs, total=False):
|
794 |
+
_defaults = {
|
795 |
+
"text_kwargs": {
|
796 |
+
"padding": "max_length",
|
797 |
+
"max_length": 64,
|
798 |
+
},
|
799 |
+
}
|
800 |
+
```
|
801 |
+
Args:
|
802 |
+
ModelProcessorKwargs (`ProcessingKwargs`):
|
803 |
+
Typed dictionary of kwargs specifically required by the model passed.
|
804 |
+
tokenizer_init_kwargs (`Dict`, *optional*):
|
805 |
+
Dictionary of kwargs the tokenizer was instantiated with and need to take precedence over defaults.
|
806 |
+
|
807 |
+
Returns:
|
808 |
+
output_kwargs (`Dict`):
|
809 |
+
Dictionary of per-modality kwargs to be passed to each modality-specific processor.
|
810 |
+
|
811 |
+
"""
|
812 |
+
# Initialize dictionaries
|
813 |
+
output_kwargs = {
|
814 |
+
"text_kwargs": {},
|
815 |
+
"images_kwargs": {},
|
816 |
+
"audio_kwargs": {},
|
817 |
+
"videos_kwargs": {},
|
818 |
+
"chat_template_kwargs": {},
|
819 |
+
"common_kwargs": {},
|
820 |
+
}
|
821 |
+
|
822 |
+
default_kwargs = {
|
823 |
+
"text_kwargs": {},
|
824 |
+
"images_kwargs": {},
|
825 |
+
"audio_kwargs": {},
|
826 |
+
"videos_kwargs": {},
|
827 |
+
"chat_template_kwargs": {},
|
828 |
+
"common_kwargs": {},
|
829 |
+
}
|
830 |
+
|
831 |
+
used_keys = set()
|
832 |
+
|
833 |
+
# get defaults from set model processor kwargs if they exist
|
834 |
+
for modality in default_kwargs:
|
835 |
+
default_kwargs[modality] = ModelProcessorKwargs._defaults.get(modality, {}).copy()
|
836 |
+
# update defaults with arguments from tokenizer init
|
837 |
+
for modality_key in ModelProcessorKwargs.__annotations__[modality].__annotations__.keys():
|
838 |
+
# init with tokenizer init kwargs if necessary
|
839 |
+
if modality_key in tokenizer_init_kwargs:
|
840 |
+
value = (
|
841 |
+
getattr(self.tokenizer, modality_key)
|
842 |
+
if hasattr(self.tokenizer, modality_key)
|
843 |
+
else tokenizer_init_kwargs[modality_key]
|
844 |
+
)
|
845 |
+
default_kwargs[modality][modality_key] = value
|
846 |
+
# now defaults kwargs are updated with the tokenizers defaults.
|
847 |
+
# pass defaults to output dictionary
|
848 |
+
output_kwargs.update(default_kwargs)
|
849 |
+
|
850 |
+
# update modality kwargs with passed kwargs
|
851 |
+
non_modality_kwargs = set(kwargs) - set(output_kwargs)
|
852 |
+
for modality in output_kwargs:
|
853 |
+
for modality_key in ModelProcessorKwargs.__annotations__[modality].__annotations__.keys():
|
854 |
+
# check if we received a structured kwarg dict or not to handle it correctly
|
855 |
+
if modality in kwargs:
|
856 |
+
kwarg_value = kwargs[modality].pop(modality_key, "__empty__")
|
857 |
+
# check if this key was passed as a flat kwarg.
|
858 |
+
if kwarg_value != "__empty__" and modality_key in non_modality_kwargs:
|
859 |
+
raise ValueError(
|
860 |
+
f"Keyword argument {modality_key} was passed two times:\n"
|
861 |
+
f"in a dictionary for {modality} and as a **kwarg."
|
862 |
+
)
|
863 |
+
elif modality_key in kwargs:
|
864 |
+
# we get a modality_key instead of popping it because modality-specific processors
|
865 |
+
# can have overlapping kwargs
|
866 |
+
kwarg_value = kwargs.get(modality_key, "__empty__")
|
867 |
+
else:
|
868 |
+
kwarg_value = "__empty__"
|
869 |
+
if kwarg_value != "__empty__":
|
870 |
+
output_kwargs[modality][modality_key] = kwarg_value
|
871 |
+
used_keys.add(modality_key)
|
872 |
+
|
873 |
+
# Determine if kwargs is a flat dictionary or contains nested dictionaries
|
874 |
+
if any(key in default_kwargs for key in kwargs):
|
875 |
+
# kwargs is dictionary-based, and some keys match modality names
|
876 |
+
for modality, subdict in kwargs.items():
|
877 |
+
if modality in default_kwargs:
|
878 |
+
for subkey, subvalue in subdict.items():
|
879 |
+
if subkey not in used_keys:
|
880 |
+
output_kwargs[modality][subkey] = subvalue
|
881 |
+
used_keys.add(subkey)
|
882 |
+
else:
|
883 |
+
# kwargs is a flat dictionary
|
884 |
+
for key in kwargs:
|
885 |
+
if key not in used_keys:
|
886 |
+
output_kwargs["common_kwargs"][key] = kwargs[key]
|
887 |
+
|
888 |
+
# all modality-specific kwargs are updated with common kwargs
|
889 |
+
for modality in output_kwargs:
|
890 |
+
output_kwargs[modality].update(output_kwargs["common_kwargs"])
|
891 |
+
return output_kwargs
|
processor_config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoProcessor": "processing_videollama3.Videollama3Qwen2Processor"
|
4 |
+
},
|
5 |
+
"fps": 1,
|
6 |
+
"image_merge_size": 1,
|
7 |
+
"max_frames": 128,
|
8 |
+
"processor_class": "Videollama3Qwen2Processor",
|
9 |
+
"video_merge_size": 2
|
10 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
tokenizer_config.json
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
},
|
181 |
+
"151665": {
|
182 |
+
"content": "<image>",
|
183 |
+
"lstrip": false,
|
184 |
+
"normalized": false,
|
185 |
+
"rstrip": false,
|
186 |
+
"single_word": false,
|
187 |
+
"special": true
|
188 |
+
},
|
189 |
+
"151666": {
|
190 |
+
"content": "<|stream_start|>",
|
191 |
+
"lstrip": false,
|
192 |
+
"normalized": false,
|
193 |
+
"rstrip": false,
|
194 |
+
"single_word": false,
|
195 |
+
"special": true
|
196 |
+
},
|
197 |
+
"151667": {
|
198 |
+
"content": "<|stream_end|>",
|
199 |
+
"lstrip": false,
|
200 |
+
"normalized": false,
|
201 |
+
"rstrip": false,
|
202 |
+
"single_word": false,
|
203 |
+
"special": true
|
204 |
+
}
|
205 |
+
},
|
206 |
+
"additional_special_tokens": [
|
207 |
+
"<|im_start|>",
|
208 |
+
"<|im_end|>",
|
209 |
+
"<|object_ref_start|>",
|
210 |
+
"<|object_ref_end|>",
|
211 |
+
"<|box_start|>",
|
212 |
+
"<|box_end|>",
|
213 |
+
"<|quad_start|>",
|
214 |
+
"<|quad_end|>",
|
215 |
+
"<|vision_start|>",
|
216 |
+
"<|vision_end|>",
|
217 |
+
"<|vision_pad|>",
|
218 |
+
"<|image_pad|>",
|
219 |
+
"<|video_pad|>"
|
220 |
+
],
|
221 |
+
"auto_map": {
|
222 |
+
"AutoProcessor": "processing_videollama3.Videollama3Qwen2Processor"
|
223 |
+
},
|
224 |
+
"bos_token": null,
|
225 |
+
"chat_template": "\n{%- set identifier = 'im' %}\n{% for message in messages %}\n {% if add_system_prompt and loop.first and message['role'] != 'system' %}\n {{- '<|im_start|>system\nYou are VideoLLaMA3 created by Alibaba DAMO Academy, a helpful assistant to help people understand images and videos.<|im_end|>\n' -}}\n {% endif %}\n {% if message['role'] == 'stream' %}\n {% set identifier = 'stream' %}\n {% else %}\n {% set identifier = 'im' %}\n {% endif %}\n {{- '<|' + identifier + '_start|>' + message['role'] + '\n' -}}\n {% if message['content'] is string %}\n {{- message['content'] + '<|' + identifier + '_end|>\n' -}}\n {% else %}\n {% for content in message['content'] %}\n {% if content is string %}\n {{- content -}}\n {% elif content['type'] == 'text' or 'text' in content %}\n {{- content['text'] -}}\n {% elif content['type'] == 'image' or 'image' in content %}\n {% if 'timestamp' in content %}\n {{- 'Time ' + content['timestamp'] | round(1) | string + 's: ' -}}\n {% endif %}\n {{- image_token + '\n' -}}\n {% elif content['type'] == 'video' or 'video' in content %}\n {% for i in range(content['num_frames']) %}\n {% if 'timestamps' in content %}\n {{- 'Time ' + content['timestamps'][i] | round(1) | string + 's:' -}}\n {% endif %}\n {% if i < content['num_frames'] - 1 %}\n {{- image_token + ',' -}}\n {% else %}\n {{- image_token + '\n' -}}\n {% endif %}\n {% endfor %}\n {% endif %}\n {% endfor %}\n {% if identifier == 'stream' %}\n {{- '<|' + identifier + '_end|>' -}}\n {% else %}\n {{- '<|' + identifier + '_end|>\n' -}}\n {% endif %}\n {% endif %}\n{% endfor %}\n{% if add_generation_prompt %}\n {{- '<|im_start|>assistant\n' -}}\n{% endif %}\n",
|
226 |
+
"clean_up_tokenization_spaces": false,
|
227 |
+
"eos_token": "<|im_end|>",
|
228 |
+
"errors": "replace",
|
229 |
+
"model_max_length": 32768,
|
230 |
+
"pad_token": "<|endoftext|>",
|
231 |
+
"padding_side": "right",
|
232 |
+
"processor_class": "Videollama3Qwen2Processor",
|
233 |
+
"split_special_tokens": false,
|
234 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
235 |
+
"unk_token": null
|
236 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|