File size: 2,844 Bytes
d4786ea 8810848 9cb6d42 d4786ea 59dec1f d4786ea 53e5b69 2ff77b9 d4786ea 2ff77b9 d4786ea 2ff77b9 d4786ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
---
license: bsd-3-clause
base_model: MIT/ast-finetuned-audioset-10-10-0.4593
tags:
- generated_from_trainer
metrics:
- accuracy
- recall
- precision
- f1
model-index:
- name: DL_Audio_Hatespeech_ast_trainer_push
results: []
widget:
- src: example_hate_speech.wav
example_title: Hate Speech Example
- src: example_non_hate.wav
example_title: Non-Hate Speech Example
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hatespeech_ast
This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6306
- Accuracy: 0.6486
- Recall: 0.8368
- Precision: 0.6136
- F1: 0.7080
And the following results on the test set:
- Loss: 0.6441
- Accuracy: 0.6318
- Recall: 0.8191
- Precision: 0.6001
- F1: 0.6927
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.753 | 1.0 | 310 | 0.6793 | 0.5559 | 0.2258 | 0.6968 | 0.3411 |
| 0.6598 | 2.0 | 620 | 0.6447 | 0.6265 | 0.7575 | 0.6066 | 0.6737 |
| 0.6374 | 3.0 | 930 | 0.6306 | 0.6486 | 0.8368 | 0.6136 | 0.7080 |
| 0.5586 | 4.0 | 1240 | 0.7678 | 0.6091 | 0.9144 | 0.5727 | 0.7043 |
| 0.4008 | 5.0 | 1550 | 0.8134 | 0.6212 | 0.5515 | 0.6511 | 0.5972 |
| 0.2072 | 6.0 | 1860 | 1.0746 | 0.6265 | 0.7448 | 0.6088 | 0.6700 |
| 0.0904 | 7.0 | 2170 | 2.0297 | 0.6273 | 0.6878 | 0.6209 | 0.6526 |
| 0.0203 | 8.0 | 2480 | 3.0627 | 0.6236 | 0.6307 | 0.6302 | 0.6305 |
| 0.0244 | 9.0 | 2790 | 3.2017 | 0.6297 | 0.7013 | 0.6206 | 0.6585 |
| 0.0 | 10.0 | 3100 | 3.2659 | 0.6313 | 0.6331 | 0.6392 | 0.6361 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.3.2
- Tokenizers 0.19.1
|