--- license: bsd-3-clause base_model: MIT/ast-finetuned-audioset-10-10-0.4593 tags: - generated_from_trainer metrics: - accuracy - recall - precision - f1 model-index: - name: DL_Audio_Hatespeech_ast_trainer_push results: [] --- # DL_Audio_Hatespeech_ast_trainer_push This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6306 - Accuracy: 0.6486 - Recall: 0.8368 - Precision: 0.6136 - F1: 0.7080 And the following results on the test set: - Loss: 0.6441 - Accuracy: 0.6318 - Recall: 0.8191 - Precision: 0.6001 - F1: 0.6927 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.753 | 1.0 | 310 | 0.6793 | 0.5559 | 0.2258 | 0.6968 | 0.3411 | | 0.6598 | 2.0 | 620 | 0.6447 | 0.6265 | 0.7575 | 0.6066 | 0.6737 | | 0.6374 | 3.0 | 930 | 0.6306 | 0.6486 | 0.8368 | 0.6136 | 0.7080 | | 0.5586 | 4.0 | 1240 | 0.7678 | 0.6091 | 0.9144 | 0.5727 | 0.7043 | | 0.4008 | 5.0 | 1550 | 0.8134 | 0.6212 | 0.5515 | 0.6511 | 0.5972 | | 0.2072 | 6.0 | 1860 | 1.0746 | 0.6265 | 0.7448 | 0.6088 | 0.6700 | | 0.0904 | 7.0 | 2170 | 2.0297 | 0.6273 | 0.6878 | 0.6209 | 0.6526 | | 0.0203 | 8.0 | 2480 | 3.0627 | 0.6236 | 0.6307 | 0.6302 | 0.6305 | | 0.0244 | 9.0 | 2790 | 3.2017 | 0.6297 | 0.7013 | 0.6206 | 0.6585 | | 0.0 | 10.0 | 3100 | 3.2659 | 0.6313 | 0.6331 | 0.6392 | 0.6361 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.3.0+cu121 - Datasets 2.3.2 - Tokenizers 0.19.1