--- license: bsd-3-clause base_model: MIT/ast-finetuned-audioset-10-10-0.4593 tags: - generated_from_trainer metrics: - accuracy - recall - precision - f1 model-index: - name: DL_Audio_Hatespeech_ast_trainer_push results: [] --- # DL_Audio_Hatespeech_ast_trainer_push This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6336 - Accuracy: 0.6431 - Recall: 0.7452 - Precision: 0.6237 - F1: 0.6790 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.6432 | 0.9987 | 387 | 0.6686 | 0.5992 | 0.6580 | 0.5944 | 0.6245 | | 0.6414 | 2.0 | 775 | 0.6336 | 0.6431 | 0.7452 | 0.6237 | 0.6790 | | 0.6079 | 2.9987 | 1162 | 0.6505 | 0.6328 | 0.5783 | 0.6561 | 0.6148 | | 0.5088 | 4.0 | 1550 | 0.7122 | 0.6176 | 0.6624 | 0.6136 | 0.6371 | | 0.3005 | 4.9935 | 1935 | 0.9250 | 0.6099 | 0.6038 | 0.6176 | 0.6106 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.3.0+cu121 - Datasets 2.3.2 - Tokenizers 0.19.1