xiaowenbin
commited on
Upload README_zh.md
Browse files- README_zh.md +1332 -0
README_zh.md
ADDED
@@ -0,0 +1,1332 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
+
tags:
|
4 |
+
- sentence-transformers
|
5 |
+
- feature-extraction
|
6 |
+
- sentence-similarity
|
7 |
+
- mteb
|
8 |
+
model-index:
|
9 |
+
- name: Dmeta-embedding
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: STS
|
13 |
+
dataset:
|
14 |
+
type: C-MTEB/AFQMC
|
15 |
+
name: MTEB AFQMC
|
16 |
+
config: default
|
17 |
+
split: validation
|
18 |
+
revision: None
|
19 |
+
metrics:
|
20 |
+
- type: cos_sim_pearson
|
21 |
+
value: 65.60825224706932
|
22 |
+
- type: cos_sim_spearman
|
23 |
+
value: 71.12862586297193
|
24 |
+
- type: euclidean_pearson
|
25 |
+
value: 70.18130275750404
|
26 |
+
- type: euclidean_spearman
|
27 |
+
value: 71.12862586297193
|
28 |
+
- type: manhattan_pearson
|
29 |
+
value: 70.14470398075396
|
30 |
+
- type: manhattan_spearman
|
31 |
+
value: 71.05226975911737
|
32 |
+
- task:
|
33 |
+
type: STS
|
34 |
+
dataset:
|
35 |
+
type: C-MTEB/ATEC
|
36 |
+
name: MTEB ATEC
|
37 |
+
config: default
|
38 |
+
split: test
|
39 |
+
revision: None
|
40 |
+
metrics:
|
41 |
+
- type: cos_sim_pearson
|
42 |
+
value: 65.52386345655479
|
43 |
+
- type: cos_sim_spearman
|
44 |
+
value: 64.64245253181382
|
45 |
+
- type: euclidean_pearson
|
46 |
+
value: 73.20157662981914
|
47 |
+
- type: euclidean_spearman
|
48 |
+
value: 64.64245253178956
|
49 |
+
- type: manhattan_pearson
|
50 |
+
value: 73.22837571756348
|
51 |
+
- type: manhattan_spearman
|
52 |
+
value: 64.62632334391418
|
53 |
+
- task:
|
54 |
+
type: Classification
|
55 |
+
dataset:
|
56 |
+
type: mteb/amazon_reviews_multi
|
57 |
+
name: MTEB AmazonReviewsClassification (zh)
|
58 |
+
config: zh
|
59 |
+
split: test
|
60 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
61 |
+
metrics:
|
62 |
+
- type: accuracy
|
63 |
+
value: 44.925999999999995
|
64 |
+
- type: f1
|
65 |
+
value: 42.82555191308971
|
66 |
+
- task:
|
67 |
+
type: STS
|
68 |
+
dataset:
|
69 |
+
type: C-MTEB/BQ
|
70 |
+
name: MTEB BQ
|
71 |
+
config: default
|
72 |
+
split: test
|
73 |
+
revision: None
|
74 |
+
metrics:
|
75 |
+
- type: cos_sim_pearson
|
76 |
+
value: 71.35236446393156
|
77 |
+
- type: cos_sim_spearman
|
78 |
+
value: 72.29629643702184
|
79 |
+
- type: euclidean_pearson
|
80 |
+
value: 70.94570179874498
|
81 |
+
- type: euclidean_spearman
|
82 |
+
value: 72.29629297226953
|
83 |
+
- type: manhattan_pearson
|
84 |
+
value: 70.84463025501125
|
85 |
+
- type: manhattan_spearman
|
86 |
+
value: 72.24527021975821
|
87 |
+
- task:
|
88 |
+
type: Clustering
|
89 |
+
dataset:
|
90 |
+
type: C-MTEB/CLSClusteringP2P
|
91 |
+
name: MTEB CLSClusteringP2P
|
92 |
+
config: default
|
93 |
+
split: test
|
94 |
+
revision: None
|
95 |
+
metrics:
|
96 |
+
- type: v_measure
|
97 |
+
value: 40.24232916894152
|
98 |
+
- task:
|
99 |
+
type: Clustering
|
100 |
+
dataset:
|
101 |
+
type: C-MTEB/CLSClusteringS2S
|
102 |
+
name: MTEB CLSClusteringS2S
|
103 |
+
config: default
|
104 |
+
split: test
|
105 |
+
revision: None
|
106 |
+
metrics:
|
107 |
+
- type: v_measure
|
108 |
+
value: 39.167806226929706
|
109 |
+
- task:
|
110 |
+
type: Reranking
|
111 |
+
dataset:
|
112 |
+
type: C-MTEB/CMedQAv1-reranking
|
113 |
+
name: MTEB CMedQAv1
|
114 |
+
config: default
|
115 |
+
split: test
|
116 |
+
revision: None
|
117 |
+
metrics:
|
118 |
+
- type: map
|
119 |
+
value: 88.48837920106357
|
120 |
+
- type: mrr
|
121 |
+
value: 90.36861111111111
|
122 |
+
- task:
|
123 |
+
type: Reranking
|
124 |
+
dataset:
|
125 |
+
type: C-MTEB/CMedQAv2-reranking
|
126 |
+
name: MTEB CMedQAv2
|
127 |
+
config: default
|
128 |
+
split: test
|
129 |
+
revision: None
|
130 |
+
metrics:
|
131 |
+
- type: map
|
132 |
+
value: 89.17878171657071
|
133 |
+
- type: mrr
|
134 |
+
value: 91.35805555555555
|
135 |
+
- task:
|
136 |
+
type: Retrieval
|
137 |
+
dataset:
|
138 |
+
type: C-MTEB/CmedqaRetrieval
|
139 |
+
name: MTEB CmedqaRetrieval
|
140 |
+
config: default
|
141 |
+
split: dev
|
142 |
+
revision: None
|
143 |
+
metrics:
|
144 |
+
- type: map_at_1
|
145 |
+
value: 25.751
|
146 |
+
- type: map_at_10
|
147 |
+
value: 38.946
|
148 |
+
- type: map_at_100
|
149 |
+
value: 40.855000000000004
|
150 |
+
- type: map_at_1000
|
151 |
+
value: 40.953
|
152 |
+
- type: map_at_3
|
153 |
+
value: 34.533
|
154 |
+
- type: map_at_5
|
155 |
+
value: 36.905
|
156 |
+
- type: mrr_at_1
|
157 |
+
value: 39.235
|
158 |
+
- type: mrr_at_10
|
159 |
+
value: 47.713
|
160 |
+
- type: mrr_at_100
|
161 |
+
value: 48.71
|
162 |
+
- type: mrr_at_1000
|
163 |
+
value: 48.747
|
164 |
+
- type: mrr_at_3
|
165 |
+
value: 45.086
|
166 |
+
- type: mrr_at_5
|
167 |
+
value: 46.498
|
168 |
+
- type: ndcg_at_1
|
169 |
+
value: 39.235
|
170 |
+
- type: ndcg_at_10
|
171 |
+
value: 45.831
|
172 |
+
- type: ndcg_at_100
|
173 |
+
value: 53.162
|
174 |
+
- type: ndcg_at_1000
|
175 |
+
value: 54.800000000000004
|
176 |
+
- type: ndcg_at_3
|
177 |
+
value: 40.188
|
178 |
+
- type: ndcg_at_5
|
179 |
+
value: 42.387
|
180 |
+
- type: precision_at_1
|
181 |
+
value: 39.235
|
182 |
+
- type: precision_at_10
|
183 |
+
value: 10.273
|
184 |
+
- type: precision_at_100
|
185 |
+
value: 1.627
|
186 |
+
- type: precision_at_1000
|
187 |
+
value: 0.183
|
188 |
+
- type: precision_at_3
|
189 |
+
value: 22.772000000000002
|
190 |
+
- type: precision_at_5
|
191 |
+
value: 16.524
|
192 |
+
- type: recall_at_1
|
193 |
+
value: 25.751
|
194 |
+
- type: recall_at_10
|
195 |
+
value: 57.411
|
196 |
+
- type: recall_at_100
|
197 |
+
value: 87.44
|
198 |
+
- type: recall_at_1000
|
199 |
+
value: 98.386
|
200 |
+
- type: recall_at_3
|
201 |
+
value: 40.416000000000004
|
202 |
+
- type: recall_at_5
|
203 |
+
value: 47.238
|
204 |
+
- task:
|
205 |
+
type: PairClassification
|
206 |
+
dataset:
|
207 |
+
type: C-MTEB/CMNLI
|
208 |
+
name: MTEB Cmnli
|
209 |
+
config: default
|
210 |
+
split: validation
|
211 |
+
revision: None
|
212 |
+
metrics:
|
213 |
+
- type: cos_sim_accuracy
|
214 |
+
value: 83.59591100420926
|
215 |
+
- type: cos_sim_ap
|
216 |
+
value: 90.65538153970263
|
217 |
+
- type: cos_sim_f1
|
218 |
+
value: 84.76466651795673
|
219 |
+
- type: cos_sim_precision
|
220 |
+
value: 81.04073363190446
|
221 |
+
- type: cos_sim_recall
|
222 |
+
value: 88.84732288987608
|
223 |
+
- type: dot_accuracy
|
224 |
+
value: 83.59591100420926
|
225 |
+
- type: dot_ap
|
226 |
+
value: 90.64355541781003
|
227 |
+
- type: dot_f1
|
228 |
+
value: 84.76466651795673
|
229 |
+
- type: dot_precision
|
230 |
+
value: 81.04073363190446
|
231 |
+
- type: dot_recall
|
232 |
+
value: 88.84732288987608
|
233 |
+
- type: euclidean_accuracy
|
234 |
+
value: 83.59591100420926
|
235 |
+
- type: euclidean_ap
|
236 |
+
value: 90.6547878194287
|
237 |
+
- type: euclidean_f1
|
238 |
+
value: 84.76466651795673
|
239 |
+
- type: euclidean_precision
|
240 |
+
value: 81.04073363190446
|
241 |
+
- type: euclidean_recall
|
242 |
+
value: 88.84732288987608
|
243 |
+
- type: manhattan_accuracy
|
244 |
+
value: 83.51172579675286
|
245 |
+
- type: manhattan_ap
|
246 |
+
value: 90.59941589844144
|
247 |
+
- type: manhattan_f1
|
248 |
+
value: 84.51827242524917
|
249 |
+
- type: manhattan_precision
|
250 |
+
value: 80.28613507258574
|
251 |
+
- type: manhattan_recall
|
252 |
+
value: 89.22141688099134
|
253 |
+
- type: max_accuracy
|
254 |
+
value: 83.59591100420926
|
255 |
+
- type: max_ap
|
256 |
+
value: 90.65538153970263
|
257 |
+
- type: max_f1
|
258 |
+
value: 84.76466651795673
|
259 |
+
- task:
|
260 |
+
type: Retrieval
|
261 |
+
dataset:
|
262 |
+
type: C-MTEB/CovidRetrieval
|
263 |
+
name: MTEB CovidRetrieval
|
264 |
+
config: default
|
265 |
+
split: dev
|
266 |
+
revision: None
|
267 |
+
metrics:
|
268 |
+
- type: map_at_1
|
269 |
+
value: 63.251000000000005
|
270 |
+
- type: map_at_10
|
271 |
+
value: 72.442
|
272 |
+
- type: map_at_100
|
273 |
+
value: 72.79299999999999
|
274 |
+
- type: map_at_1000
|
275 |
+
value: 72.80499999999999
|
276 |
+
- type: map_at_3
|
277 |
+
value: 70.293
|
278 |
+
- type: map_at_5
|
279 |
+
value: 71.571
|
280 |
+
- type: mrr_at_1
|
281 |
+
value: 63.541000000000004
|
282 |
+
- type: mrr_at_10
|
283 |
+
value: 72.502
|
284 |
+
- type: mrr_at_100
|
285 |
+
value: 72.846
|
286 |
+
- type: mrr_at_1000
|
287 |
+
value: 72.858
|
288 |
+
- type: mrr_at_3
|
289 |
+
value: 70.39
|
290 |
+
- type: mrr_at_5
|
291 |
+
value: 71.654
|
292 |
+
- type: ndcg_at_1
|
293 |
+
value: 63.541000000000004
|
294 |
+
- type: ndcg_at_10
|
295 |
+
value: 76.774
|
296 |
+
- type: ndcg_at_100
|
297 |
+
value: 78.389
|
298 |
+
- type: ndcg_at_1000
|
299 |
+
value: 78.678
|
300 |
+
- type: ndcg_at_3
|
301 |
+
value: 72.47
|
302 |
+
- type: ndcg_at_5
|
303 |
+
value: 74.748
|
304 |
+
- type: precision_at_1
|
305 |
+
value: 63.541000000000004
|
306 |
+
- type: precision_at_10
|
307 |
+
value: 9.115
|
308 |
+
- type: precision_at_100
|
309 |
+
value: 0.9860000000000001
|
310 |
+
- type: precision_at_1000
|
311 |
+
value: 0.101
|
312 |
+
- type: precision_at_3
|
313 |
+
value: 26.379
|
314 |
+
- type: precision_at_5
|
315 |
+
value: 16.965
|
316 |
+
- type: recall_at_1
|
317 |
+
value: 63.251000000000005
|
318 |
+
- type: recall_at_10
|
319 |
+
value: 90.253
|
320 |
+
- type: recall_at_100
|
321 |
+
value: 97.576
|
322 |
+
- type: recall_at_1000
|
323 |
+
value: 99.789
|
324 |
+
- type: recall_at_3
|
325 |
+
value: 78.635
|
326 |
+
- type: recall_at_5
|
327 |
+
value: 84.141
|
328 |
+
- task:
|
329 |
+
type: Retrieval
|
330 |
+
dataset:
|
331 |
+
type: C-MTEB/DuRetrieval
|
332 |
+
name: MTEB DuRetrieval
|
333 |
+
config: default
|
334 |
+
split: dev
|
335 |
+
revision: None
|
336 |
+
metrics:
|
337 |
+
- type: map_at_1
|
338 |
+
value: 23.597
|
339 |
+
- type: map_at_10
|
340 |
+
value: 72.411
|
341 |
+
- type: map_at_100
|
342 |
+
value: 75.58500000000001
|
343 |
+
- type: map_at_1000
|
344 |
+
value: 75.64800000000001
|
345 |
+
- type: map_at_3
|
346 |
+
value: 49.61
|
347 |
+
- type: map_at_5
|
348 |
+
value: 62.527
|
349 |
+
- type: mrr_at_1
|
350 |
+
value: 84.65
|
351 |
+
- type: mrr_at_10
|
352 |
+
value: 89.43900000000001
|
353 |
+
- type: mrr_at_100
|
354 |
+
value: 89.525
|
355 |
+
- type: mrr_at_1000
|
356 |
+
value: 89.529
|
357 |
+
- type: mrr_at_3
|
358 |
+
value: 89
|
359 |
+
- type: mrr_at_5
|
360 |
+
value: 89.297
|
361 |
+
- type: ndcg_at_1
|
362 |
+
value: 84.65
|
363 |
+
- type: ndcg_at_10
|
364 |
+
value: 81.47
|
365 |
+
- type: ndcg_at_100
|
366 |
+
value: 85.198
|
367 |
+
- type: ndcg_at_1000
|
368 |
+
value: 85.828
|
369 |
+
- type: ndcg_at_3
|
370 |
+
value: 79.809
|
371 |
+
- type: ndcg_at_5
|
372 |
+
value: 78.55
|
373 |
+
- type: precision_at_1
|
374 |
+
value: 84.65
|
375 |
+
- type: precision_at_10
|
376 |
+
value: 39.595
|
377 |
+
- type: precision_at_100
|
378 |
+
value: 4.707
|
379 |
+
- type: precision_at_1000
|
380 |
+
value: 0.485
|
381 |
+
- type: precision_at_3
|
382 |
+
value: 71.61699999999999
|
383 |
+
- type: precision_at_5
|
384 |
+
value: 60.45
|
385 |
+
- type: recall_at_1
|
386 |
+
value: 23.597
|
387 |
+
- type: recall_at_10
|
388 |
+
value: 83.34
|
389 |
+
- type: recall_at_100
|
390 |
+
value: 95.19800000000001
|
391 |
+
- type: recall_at_1000
|
392 |
+
value: 98.509
|
393 |
+
- type: recall_at_3
|
394 |
+
value: 52.744
|
395 |
+
- type: recall_at_5
|
396 |
+
value: 68.411
|
397 |
+
- task:
|
398 |
+
type: Retrieval
|
399 |
+
dataset:
|
400 |
+
type: C-MTEB/EcomRetrieval
|
401 |
+
name: MTEB EcomRetrieval
|
402 |
+
config: default
|
403 |
+
split: dev
|
404 |
+
revision: None
|
405 |
+
metrics:
|
406 |
+
- type: map_at_1
|
407 |
+
value: 53.1
|
408 |
+
- type: map_at_10
|
409 |
+
value: 63.359
|
410 |
+
- type: map_at_100
|
411 |
+
value: 63.9
|
412 |
+
- type: map_at_1000
|
413 |
+
value: 63.909000000000006
|
414 |
+
- type: map_at_3
|
415 |
+
value: 60.95
|
416 |
+
- type: map_at_5
|
417 |
+
value: 62.305
|
418 |
+
- type: mrr_at_1
|
419 |
+
value: 53.1
|
420 |
+
- type: mrr_at_10
|
421 |
+
value: 63.359
|
422 |
+
- type: mrr_at_100
|
423 |
+
value: 63.9
|
424 |
+
- type: mrr_at_1000
|
425 |
+
value: 63.909000000000006
|
426 |
+
- type: mrr_at_3
|
427 |
+
value: 60.95
|
428 |
+
- type: mrr_at_5
|
429 |
+
value: 62.305
|
430 |
+
- type: ndcg_at_1
|
431 |
+
value: 53.1
|
432 |
+
- type: ndcg_at_10
|
433 |
+
value: 68.418
|
434 |
+
- type: ndcg_at_100
|
435 |
+
value: 70.88499999999999
|
436 |
+
- type: ndcg_at_1000
|
437 |
+
value: 71.135
|
438 |
+
- type: ndcg_at_3
|
439 |
+
value: 63.50599999999999
|
440 |
+
- type: ndcg_at_5
|
441 |
+
value: 65.92
|
442 |
+
- type: precision_at_1
|
443 |
+
value: 53.1
|
444 |
+
- type: precision_at_10
|
445 |
+
value: 8.43
|
446 |
+
- type: precision_at_100
|
447 |
+
value: 0.955
|
448 |
+
- type: precision_at_1000
|
449 |
+
value: 0.098
|
450 |
+
- type: precision_at_3
|
451 |
+
value: 23.633000000000003
|
452 |
+
- type: precision_at_5
|
453 |
+
value: 15.340000000000002
|
454 |
+
- type: recall_at_1
|
455 |
+
value: 53.1
|
456 |
+
- type: recall_at_10
|
457 |
+
value: 84.3
|
458 |
+
- type: recall_at_100
|
459 |
+
value: 95.5
|
460 |
+
- type: recall_at_1000
|
461 |
+
value: 97.5
|
462 |
+
- type: recall_at_3
|
463 |
+
value: 70.89999999999999
|
464 |
+
- type: recall_at_5
|
465 |
+
value: 76.7
|
466 |
+
- task:
|
467 |
+
type: Classification
|
468 |
+
dataset:
|
469 |
+
type: C-MTEB/IFlyTek-classification
|
470 |
+
name: MTEB IFlyTek
|
471 |
+
config: default
|
472 |
+
split: validation
|
473 |
+
revision: None
|
474 |
+
metrics:
|
475 |
+
- type: accuracy
|
476 |
+
value: 48.303193535975375
|
477 |
+
- type: f1
|
478 |
+
value: 35.96559358693866
|
479 |
+
- task:
|
480 |
+
type: Classification
|
481 |
+
dataset:
|
482 |
+
type: C-MTEB/JDReview-classification
|
483 |
+
name: MTEB JDReview
|
484 |
+
config: default
|
485 |
+
split: test
|
486 |
+
revision: None
|
487 |
+
metrics:
|
488 |
+
- type: accuracy
|
489 |
+
value: 85.06566604127579
|
490 |
+
- type: ap
|
491 |
+
value: 52.0596483757231
|
492 |
+
- type: f1
|
493 |
+
value: 79.5196835127668
|
494 |
+
- task:
|
495 |
+
type: STS
|
496 |
+
dataset:
|
497 |
+
type: C-MTEB/LCQMC
|
498 |
+
name: MTEB LCQMC
|
499 |
+
config: default
|
500 |
+
split: test
|
501 |
+
revision: None
|
502 |
+
metrics:
|
503 |
+
- type: cos_sim_pearson
|
504 |
+
value: 74.48499423626059
|
505 |
+
- type: cos_sim_spearman
|
506 |
+
value: 78.75806756061169
|
507 |
+
- type: euclidean_pearson
|
508 |
+
value: 78.47917601852879
|
509 |
+
- type: euclidean_spearman
|
510 |
+
value: 78.75807199272622
|
511 |
+
- type: manhattan_pearson
|
512 |
+
value: 78.40207586289772
|
513 |
+
- type: manhattan_spearman
|
514 |
+
value: 78.6911776964119
|
515 |
+
- task:
|
516 |
+
type: Reranking
|
517 |
+
dataset:
|
518 |
+
type: C-MTEB/Mmarco-reranking
|
519 |
+
name: MTEB MMarcoReranking
|
520 |
+
config: default
|
521 |
+
split: dev
|
522 |
+
revision: None
|
523 |
+
metrics:
|
524 |
+
- type: map
|
525 |
+
value: 24.75987466552363
|
526 |
+
- type: mrr
|
527 |
+
value: 23.40515873015873
|
528 |
+
- task:
|
529 |
+
type: Retrieval
|
530 |
+
dataset:
|
531 |
+
type: C-MTEB/MMarcoRetrieval
|
532 |
+
name: MTEB MMarcoRetrieval
|
533 |
+
config: default
|
534 |
+
split: dev
|
535 |
+
revision: None
|
536 |
+
metrics:
|
537 |
+
- type: map_at_1
|
538 |
+
value: 58.026999999999994
|
539 |
+
- type: map_at_10
|
540 |
+
value: 67.50699999999999
|
541 |
+
- type: map_at_100
|
542 |
+
value: 67.946
|
543 |
+
- type: map_at_1000
|
544 |
+
value: 67.96600000000001
|
545 |
+
- type: map_at_3
|
546 |
+
value: 65.503
|
547 |
+
- type: map_at_5
|
548 |
+
value: 66.649
|
549 |
+
- type: mrr_at_1
|
550 |
+
value: 60.20100000000001
|
551 |
+
- type: mrr_at_10
|
552 |
+
value: 68.271
|
553 |
+
- type: mrr_at_100
|
554 |
+
value: 68.664
|
555 |
+
- type: mrr_at_1000
|
556 |
+
value: 68.682
|
557 |
+
- type: mrr_at_3
|
558 |
+
value: 66.47800000000001
|
559 |
+
- type: mrr_at_5
|
560 |
+
value: 67.499
|
561 |
+
- type: ndcg_at_1
|
562 |
+
value: 60.20100000000001
|
563 |
+
- type: ndcg_at_10
|
564 |
+
value: 71.697
|
565 |
+
- type: ndcg_at_100
|
566 |
+
value: 73.736
|
567 |
+
- type: ndcg_at_1000
|
568 |
+
value: 74.259
|
569 |
+
- type: ndcg_at_3
|
570 |
+
value: 67.768
|
571 |
+
- type: ndcg_at_5
|
572 |
+
value: 69.72
|
573 |
+
- type: precision_at_1
|
574 |
+
value: 60.20100000000001
|
575 |
+
- type: precision_at_10
|
576 |
+
value: 8.927999999999999
|
577 |
+
- type: precision_at_100
|
578 |
+
value: 0.9950000000000001
|
579 |
+
- type: precision_at_1000
|
580 |
+
value: 0.104
|
581 |
+
- type: precision_at_3
|
582 |
+
value: 25.883
|
583 |
+
- type: precision_at_5
|
584 |
+
value: 16.55
|
585 |
+
- type: recall_at_1
|
586 |
+
value: 58.026999999999994
|
587 |
+
- type: recall_at_10
|
588 |
+
value: 83.966
|
589 |
+
- type: recall_at_100
|
590 |
+
value: 93.313
|
591 |
+
- type: recall_at_1000
|
592 |
+
value: 97.426
|
593 |
+
- type: recall_at_3
|
594 |
+
value: 73.342
|
595 |
+
- type: recall_at_5
|
596 |
+
value: 77.997
|
597 |
+
- task:
|
598 |
+
type: Classification
|
599 |
+
dataset:
|
600 |
+
type: mteb/amazon_massive_intent
|
601 |
+
name: MTEB MassiveIntentClassification (zh-CN)
|
602 |
+
config: zh-CN
|
603 |
+
split: test
|
604 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
605 |
+
metrics:
|
606 |
+
- type: accuracy
|
607 |
+
value: 71.1600537995965
|
608 |
+
- type: f1
|
609 |
+
value: 68.8126216609964
|
610 |
+
- task:
|
611 |
+
type: Classification
|
612 |
+
dataset:
|
613 |
+
type: mteb/amazon_massive_scenario
|
614 |
+
name: MTEB MassiveScenarioClassification (zh-CN)
|
615 |
+
config: zh-CN
|
616 |
+
split: test
|
617 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
618 |
+
metrics:
|
619 |
+
- type: accuracy
|
620 |
+
value: 73.54068594485541
|
621 |
+
- type: f1
|
622 |
+
value: 73.46845879869848
|
623 |
+
- task:
|
624 |
+
type: Retrieval
|
625 |
+
dataset:
|
626 |
+
type: C-MTEB/MedicalRetrieval
|
627 |
+
name: MTEB MedicalRetrieval
|
628 |
+
config: default
|
629 |
+
split: dev
|
630 |
+
revision: None
|
631 |
+
metrics:
|
632 |
+
- type: map_at_1
|
633 |
+
value: 54.900000000000006
|
634 |
+
- type: map_at_10
|
635 |
+
value: 61.363
|
636 |
+
- type: map_at_100
|
637 |
+
value: 61.924
|
638 |
+
- type: map_at_1000
|
639 |
+
value: 61.967000000000006
|
640 |
+
- type: map_at_3
|
641 |
+
value: 59.767
|
642 |
+
- type: map_at_5
|
643 |
+
value: 60.802
|
644 |
+
- type: mrr_at_1
|
645 |
+
value: 55.1
|
646 |
+
- type: mrr_at_10
|
647 |
+
value: 61.454
|
648 |
+
- type: mrr_at_100
|
649 |
+
value: 62.016000000000005
|
650 |
+
- type: mrr_at_1000
|
651 |
+
value: 62.059
|
652 |
+
- type: mrr_at_3
|
653 |
+
value: 59.882999999999996
|
654 |
+
- type: mrr_at_5
|
655 |
+
value: 60.893
|
656 |
+
- type: ndcg_at_1
|
657 |
+
value: 54.900000000000006
|
658 |
+
- type: ndcg_at_10
|
659 |
+
value: 64.423
|
660 |
+
- type: ndcg_at_100
|
661 |
+
value: 67.35900000000001
|
662 |
+
- type: ndcg_at_1000
|
663 |
+
value: 68.512
|
664 |
+
- type: ndcg_at_3
|
665 |
+
value: 61.224000000000004
|
666 |
+
- type: ndcg_at_5
|
667 |
+
value: 63.083
|
668 |
+
- type: precision_at_1
|
669 |
+
value: 54.900000000000006
|
670 |
+
- type: precision_at_10
|
671 |
+
value: 7.3999999999999995
|
672 |
+
- type: precision_at_100
|
673 |
+
value: 0.882
|
674 |
+
- type: precision_at_1000
|
675 |
+
value: 0.097
|
676 |
+
- type: precision_at_3
|
677 |
+
value: 21.8
|
678 |
+
- type: precision_at_5
|
679 |
+
value: 13.98
|
680 |
+
- type: recall_at_1
|
681 |
+
value: 54.900000000000006
|
682 |
+
- type: recall_at_10
|
683 |
+
value: 74
|
684 |
+
- type: recall_at_100
|
685 |
+
value: 88.2
|
686 |
+
- type: recall_at_1000
|
687 |
+
value: 97.3
|
688 |
+
- type: recall_at_3
|
689 |
+
value: 65.4
|
690 |
+
- type: recall_at_5
|
691 |
+
value: 69.89999999999999
|
692 |
+
- task:
|
693 |
+
type: Classification
|
694 |
+
dataset:
|
695 |
+
type: C-MTEB/MultilingualSentiment-classification
|
696 |
+
name: MTEB MultilingualSentiment
|
697 |
+
config: default
|
698 |
+
split: validation
|
699 |
+
revision: None
|
700 |
+
metrics:
|
701 |
+
- type: accuracy
|
702 |
+
value: 75.15666666666667
|
703 |
+
- type: f1
|
704 |
+
value: 74.8306375354435
|
705 |
+
- task:
|
706 |
+
type: PairClassification
|
707 |
+
dataset:
|
708 |
+
type: C-MTEB/OCNLI
|
709 |
+
name: MTEB Ocnli
|
710 |
+
config: default
|
711 |
+
split: validation
|
712 |
+
revision: None
|
713 |
+
metrics:
|
714 |
+
- type: cos_sim_accuracy
|
715 |
+
value: 83.10774228478614
|
716 |
+
- type: cos_sim_ap
|
717 |
+
value: 87.17679348388666
|
718 |
+
- type: cos_sim_f1
|
719 |
+
value: 84.59302325581395
|
720 |
+
- type: cos_sim_precision
|
721 |
+
value: 78.15577439570276
|
722 |
+
- type: cos_sim_recall
|
723 |
+
value: 92.18585005279832
|
724 |
+
- type: dot_accuracy
|
725 |
+
value: 83.10774228478614
|
726 |
+
- type: dot_ap
|
727 |
+
value: 87.17679348388666
|
728 |
+
- type: dot_f1
|
729 |
+
value: 84.59302325581395
|
730 |
+
- type: dot_precision
|
731 |
+
value: 78.15577439570276
|
732 |
+
- type: dot_recall
|
733 |
+
value: 92.18585005279832
|
734 |
+
- type: euclidean_accuracy
|
735 |
+
value: 83.10774228478614
|
736 |
+
- type: euclidean_ap
|
737 |
+
value: 87.17679348388666
|
738 |
+
- type: euclidean_f1
|
739 |
+
value: 84.59302325581395
|
740 |
+
- type: euclidean_precision
|
741 |
+
value: 78.15577439570276
|
742 |
+
- type: euclidean_recall
|
743 |
+
value: 92.18585005279832
|
744 |
+
- type: manhattan_accuracy
|
745 |
+
value: 82.67460747157553
|
746 |
+
- type: manhattan_ap
|
747 |
+
value: 86.94296334435238
|
748 |
+
- type: manhattan_f1
|
749 |
+
value: 84.32327166504382
|
750 |
+
- type: manhattan_precision
|
751 |
+
value: 78.22944896115628
|
752 |
+
- type: manhattan_recall
|
753 |
+
value: 91.4466737064414
|
754 |
+
- type: max_accuracy
|
755 |
+
value: 83.10774228478614
|
756 |
+
- type: max_ap
|
757 |
+
value: 87.17679348388666
|
758 |
+
- type: max_f1
|
759 |
+
value: 84.59302325581395
|
760 |
+
- task:
|
761 |
+
type: Classification
|
762 |
+
dataset:
|
763 |
+
type: C-MTEB/OnlineShopping-classification
|
764 |
+
name: MTEB OnlineShopping
|
765 |
+
config: default
|
766 |
+
split: test
|
767 |
+
revision: None
|
768 |
+
metrics:
|
769 |
+
- type: accuracy
|
770 |
+
value: 93.24999999999999
|
771 |
+
- type: ap
|
772 |
+
value: 90.98617641063584
|
773 |
+
- type: f1
|
774 |
+
value: 93.23447883650289
|
775 |
+
- task:
|
776 |
+
type: STS
|
777 |
+
dataset:
|
778 |
+
type: C-MTEB/PAWSX
|
779 |
+
name: MTEB PAWSX
|
780 |
+
config: default
|
781 |
+
split: test
|
782 |
+
revision: None
|
783 |
+
metrics:
|
784 |
+
- type: cos_sim_pearson
|
785 |
+
value: 41.071417937737856
|
786 |
+
- type: cos_sim_spearman
|
787 |
+
value: 45.049199344455424
|
788 |
+
- type: euclidean_pearson
|
789 |
+
value: 44.913450096830786
|
790 |
+
- type: euclidean_spearman
|
791 |
+
value: 45.05733424275291
|
792 |
+
- type: manhattan_pearson
|
793 |
+
value: 44.881623825912065
|
794 |
+
- type: manhattan_spearman
|
795 |
+
value: 44.989923561416596
|
796 |
+
- task:
|
797 |
+
type: STS
|
798 |
+
dataset:
|
799 |
+
type: C-MTEB/QBQTC
|
800 |
+
name: MTEB QBQTC
|
801 |
+
config: default
|
802 |
+
split: test
|
803 |
+
revision: None
|
804 |
+
metrics:
|
805 |
+
- type: cos_sim_pearson
|
806 |
+
value: 41.38238052689359
|
807 |
+
- type: cos_sim_spearman
|
808 |
+
value: 42.61949690594399
|
809 |
+
- type: euclidean_pearson
|
810 |
+
value: 40.61261500356766
|
811 |
+
- type: euclidean_spearman
|
812 |
+
value: 42.619626605620724
|
813 |
+
- type: manhattan_pearson
|
814 |
+
value: 40.8886109204474
|
815 |
+
- type: manhattan_spearman
|
816 |
+
value: 42.75791523010463
|
817 |
+
- task:
|
818 |
+
type: STS
|
819 |
+
dataset:
|
820 |
+
type: mteb/sts22-crosslingual-sts
|
821 |
+
name: MTEB STS22 (zh)
|
822 |
+
config: zh
|
823 |
+
split: test
|
824 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
825 |
+
metrics:
|
826 |
+
- type: cos_sim_pearson
|
827 |
+
value: 62.10977863727196
|
828 |
+
- type: cos_sim_spearman
|
829 |
+
value: 63.843727112473225
|
830 |
+
- type: euclidean_pearson
|
831 |
+
value: 63.25133487817196
|
832 |
+
- type: euclidean_spearman
|
833 |
+
value: 63.843727112473225
|
834 |
+
- type: manhattan_pearson
|
835 |
+
value: 63.58749018644103
|
836 |
+
- type: manhattan_spearman
|
837 |
+
value: 63.83820575456674
|
838 |
+
- task:
|
839 |
+
type: STS
|
840 |
+
dataset:
|
841 |
+
type: C-MTEB/STSB
|
842 |
+
name: MTEB STSB
|
843 |
+
config: default
|
844 |
+
split: test
|
845 |
+
revision: None
|
846 |
+
metrics:
|
847 |
+
- type: cos_sim_pearson
|
848 |
+
value: 79.30616496720054
|
849 |
+
- type: cos_sim_spearman
|
850 |
+
value: 80.767935782436
|
851 |
+
- type: euclidean_pearson
|
852 |
+
value: 80.4160642670106
|
853 |
+
- type: euclidean_spearman
|
854 |
+
value: 80.76820284024356
|
855 |
+
- type: manhattan_pearson
|
856 |
+
value: 80.27318714580251
|
857 |
+
- type: manhattan_spearman
|
858 |
+
value: 80.61030164164964
|
859 |
+
- task:
|
860 |
+
type: Reranking
|
861 |
+
dataset:
|
862 |
+
type: C-MTEB/T2Reranking
|
863 |
+
name: MTEB T2Reranking
|
864 |
+
config: default
|
865 |
+
split: dev
|
866 |
+
revision: None
|
867 |
+
metrics:
|
868 |
+
- type: map
|
869 |
+
value: 66.26242871142425
|
870 |
+
- type: mrr
|
871 |
+
value: 76.20689863623174
|
872 |
+
- task:
|
873 |
+
type: Retrieval
|
874 |
+
dataset:
|
875 |
+
type: C-MTEB/T2Retrieval
|
876 |
+
name: MTEB T2Retrieval
|
877 |
+
config: default
|
878 |
+
split: dev
|
879 |
+
revision: None
|
880 |
+
metrics:
|
881 |
+
- type: map_at_1
|
882 |
+
value: 26.240999999999996
|
883 |
+
- type: map_at_10
|
884 |
+
value: 73.009
|
885 |
+
- type: map_at_100
|
886 |
+
value: 76.893
|
887 |
+
- type: map_at_1000
|
888 |
+
value: 76.973
|
889 |
+
- type: map_at_3
|
890 |
+
value: 51.339
|
891 |
+
- type: map_at_5
|
892 |
+
value: 63.003
|
893 |
+
- type: mrr_at_1
|
894 |
+
value: 87.458
|
895 |
+
- type: mrr_at_10
|
896 |
+
value: 90.44
|
897 |
+
- type: mrr_at_100
|
898 |
+
value: 90.558
|
899 |
+
- type: mrr_at_1000
|
900 |
+
value: 90.562
|
901 |
+
- type: mrr_at_3
|
902 |
+
value: 89.89
|
903 |
+
- type: mrr_at_5
|
904 |
+
value: 90.231
|
905 |
+
- type: ndcg_at_1
|
906 |
+
value: 87.458
|
907 |
+
- type: ndcg_at_10
|
908 |
+
value: 81.325
|
909 |
+
- type: ndcg_at_100
|
910 |
+
value: 85.61999999999999
|
911 |
+
- type: ndcg_at_1000
|
912 |
+
value: 86.394
|
913 |
+
- type: ndcg_at_3
|
914 |
+
value: 82.796
|
915 |
+
- type: ndcg_at_5
|
916 |
+
value: 81.219
|
917 |
+
- type: precision_at_1
|
918 |
+
value: 87.458
|
919 |
+
- type: precision_at_10
|
920 |
+
value: 40.534
|
921 |
+
- type: precision_at_100
|
922 |
+
value: 4.96
|
923 |
+
- type: precision_at_1000
|
924 |
+
value: 0.514
|
925 |
+
- type: precision_at_3
|
926 |
+
value: 72.444
|
927 |
+
- type: precision_at_5
|
928 |
+
value: 60.601000000000006
|
929 |
+
- type: recall_at_1
|
930 |
+
value: 26.240999999999996
|
931 |
+
- type: recall_at_10
|
932 |
+
value: 80.42
|
933 |
+
- type: recall_at_100
|
934 |
+
value: 94.118
|
935 |
+
- type: recall_at_1000
|
936 |
+
value: 98.02199999999999
|
937 |
+
- type: recall_at_3
|
938 |
+
value: 53.174
|
939 |
+
- type: recall_at_5
|
940 |
+
value: 66.739
|
941 |
+
- task:
|
942 |
+
type: Classification
|
943 |
+
dataset:
|
944 |
+
type: C-MTEB/TNews-classification
|
945 |
+
name: MTEB TNews
|
946 |
+
config: default
|
947 |
+
split: validation
|
948 |
+
revision: None
|
949 |
+
metrics:
|
950 |
+
- type: accuracy
|
951 |
+
value: 52.40899999999999
|
952 |
+
- type: f1
|
953 |
+
value: 50.68532128056062
|
954 |
+
- task:
|
955 |
+
type: Clustering
|
956 |
+
dataset:
|
957 |
+
type: C-MTEB/ThuNewsClusteringP2P
|
958 |
+
name: MTEB ThuNewsClusteringP2P
|
959 |
+
config: default
|
960 |
+
split: test
|
961 |
+
revision: None
|
962 |
+
metrics:
|
963 |
+
- type: v_measure
|
964 |
+
value: 65.57616085176686
|
965 |
+
- task:
|
966 |
+
type: Clustering
|
967 |
+
dataset:
|
968 |
+
type: C-MTEB/ThuNewsClusteringS2S
|
969 |
+
name: MTEB ThuNewsClusteringS2S
|
970 |
+
config: default
|
971 |
+
split: test
|
972 |
+
revision: None
|
973 |
+
metrics:
|
974 |
+
- type: v_measure
|
975 |
+
value: 58.844999922904925
|
976 |
+
- task:
|
977 |
+
type: Retrieval
|
978 |
+
dataset:
|
979 |
+
type: C-MTEB/VideoRetrieval
|
980 |
+
name: MTEB VideoRetrieval
|
981 |
+
config: default
|
982 |
+
split: dev
|
983 |
+
revision: None
|
984 |
+
metrics:
|
985 |
+
- type: map_at_1
|
986 |
+
value: 58.4
|
987 |
+
- type: map_at_10
|
988 |
+
value: 68.64
|
989 |
+
- type: map_at_100
|
990 |
+
value: 69.062
|
991 |
+
- type: map_at_1000
|
992 |
+
value: 69.073
|
993 |
+
- type: map_at_3
|
994 |
+
value: 66.567
|
995 |
+
- type: map_at_5
|
996 |
+
value: 67.89699999999999
|
997 |
+
- type: mrr_at_1
|
998 |
+
value: 58.4
|
999 |
+
- type: mrr_at_10
|
1000 |
+
value: 68.64
|
1001 |
+
- type: mrr_at_100
|
1002 |
+
value: 69.062
|
1003 |
+
- type: mrr_at_1000
|
1004 |
+
value: 69.073
|
1005 |
+
- type: mrr_at_3
|
1006 |
+
value: 66.567
|
1007 |
+
- type: mrr_at_5
|
1008 |
+
value: 67.89699999999999
|
1009 |
+
- type: ndcg_at_1
|
1010 |
+
value: 58.4
|
1011 |
+
- type: ndcg_at_10
|
1012 |
+
value: 73.30600000000001
|
1013 |
+
- type: ndcg_at_100
|
1014 |
+
value: 75.276
|
1015 |
+
- type: ndcg_at_1000
|
1016 |
+
value: 75.553
|
1017 |
+
- type: ndcg_at_3
|
1018 |
+
value: 69.126
|
1019 |
+
- type: ndcg_at_5
|
1020 |
+
value: 71.519
|
1021 |
+
- type: precision_at_1
|
1022 |
+
value: 58.4
|
1023 |
+
- type: precision_at_10
|
1024 |
+
value: 8.780000000000001
|
1025 |
+
- type: precision_at_100
|
1026 |
+
value: 0.968
|
1027 |
+
- type: precision_at_1000
|
1028 |
+
value: 0.099
|
1029 |
+
- type: precision_at_3
|
1030 |
+
value: 25.5
|
1031 |
+
- type: precision_at_5
|
1032 |
+
value: 16.46
|
1033 |
+
- type: recall_at_1
|
1034 |
+
value: 58.4
|
1035 |
+
- type: recall_at_10
|
1036 |
+
value: 87.8
|
1037 |
+
- type: recall_at_100
|
1038 |
+
value: 96.8
|
1039 |
+
- type: recall_at_1000
|
1040 |
+
value: 99
|
1041 |
+
- type: recall_at_3
|
1042 |
+
value: 76.5
|
1043 |
+
- type: recall_at_5
|
1044 |
+
value: 82.3
|
1045 |
+
- task:
|
1046 |
+
type: Classification
|
1047 |
+
dataset:
|
1048 |
+
type: C-MTEB/waimai-classification
|
1049 |
+
name: MTEB Waimai
|
1050 |
+
config: default
|
1051 |
+
split: test
|
1052 |
+
revision: None
|
1053 |
+
metrics:
|
1054 |
+
- type: accuracy
|
1055 |
+
value: 86.21000000000001
|
1056 |
+
- type: ap
|
1057 |
+
value: 69.17460264576461
|
1058 |
+
- type: f1
|
1059 |
+
value: 84.68032984659226
|
1060 |
+
license: apache-2.0
|
1061 |
+
language:
|
1062 |
+
- zh
|
1063 |
+
- en
|
1064 |
+
---
|
1065 |
+
|
1066 |
+
<div align="center">
|
1067 |
+
<img src="logo.png" alt="icon" width="100px"/>
|
1068 |
+
</div>
|
1069 |
+
|
1070 |
+
<h1 align="center">Dmeta-embedding</h1>
|
1071 |
+
<h4 align="center">
|
1072 |
+
<p>
|
1073 |
+
<a href="README.md">English</a> |
|
1074 |
+
<a href="README_zh.md">中文</a>
|
1075 |
+
</p>
|
1076 |
+
<p>
|
1077 |
+
<a href=#usage>用法</a> |
|
1078 |
+
<a href="#evaluation">评测(可复现)</a> |
|
1079 |
+
<a href=#faq>FAQ</a> |
|
1080 |
+
<a href="#contact">联系</a> |
|
1081 |
+
<a href="#license">版权(免费商用)</a>
|
1082 |
+
<p>
|
1083 |
+
</h4>
|
1084 |
+
|
1085 |
+
**重磅更新:**
|
1086 |
+
|
1087 |
+
- **2024.02.07**, 发布了基于 Dmeta-embedding 模型的 **Embedding API** 产品,现已开启内测,[点击申请](https://dmetasoul.feishu.cn/share/base/form/shrcnu7mN1BDwKFfgGXG9Rb1yDf)即可免费获得 **4 亿 tokens** 使用额度,可编码大约 GB 级别汉字文本。
|
1088 |
+
|
1089 |
+
- 我们的初心。既要开源优秀的技术能力,又希望大家能够在实际业务中使用起来,用起来的技术才是好技术、能落地创造价值的技术才是值得长期投入的。帮助大家解决业务落地最后一公里的障碍,让大家把 Embedding 技术低成本的用起来,更多去关注自身的商业和产品服务,把复杂的技术部分交给我们。
|
1090 |
+
- 申请和使用。[点击申请](https://dmetasoul.feishu.cn/share/base/form/shrcnu7mN1BDwKFfgGXG9Rb1yDf),填写一个表单即可,48小时之内我们会通过 <[email protected]> 给您答复邮件。Embedding API 为了兼容大模型技术生态,使用方式跟 OpenAI 一致,具体用法我们将在答复邮件中进行说明。
|
1091 |
+
- 加入社群。后续我们会不断在大模型/AIGC等方向发力,为社区带来有价值、低门槛的技术,可以[点击图片](https://huggingface.co/DMetaSoul/Dmeta-embedding/resolve/main/weixin.jpeg),扫面二维码来加入我们的微信社群,一起在 AIGC 赛道加油呀!
|
1092 |
+
|
1093 |
+
|
1094 |
+
Dmeta-embedding 是一款跨领域、跨任务、开箱即用的中文 Embedding 模型,适用于搜索、问答、智能客服、LLM+RAG 等各种业务场景,支持使用 Transformers/Sentence-Transformers/Langchain 等工具加载推理。
|
1095 |
+
|
1096 |
+
优势特点如下:
|
1097 |
+
|
1098 |
+
- 多任务、场景泛化性能优异,目前已取得 **[MTEB](https://huggingface.co/spaces/mteb/leaderboard) 中文榜单第二成绩**(2024.01.25)
|
1099 |
+
- 模型参数大小仅 **400MB**,对比参数量超过 GB 级模型,可以极大降低推理成本
|
1100 |
+
- 支持上下文窗口长度达到 **1024**,对于长文本检索、RAG 等场景更适配
|
1101 |
+
|
1102 |
+
## Usage
|
1103 |
+
|
1104 |
+
目前模型支持通过 [Sentence-Transformers](#sentence-transformers), [Langchain](#langchain), [Huggingface Transformers](#huggingface-transformers) 等主流框架进行推理,具体用法参考各个框架的示例。
|
1105 |
+
|
1106 |
+
### Sentence-Transformers
|
1107 |
+
|
1108 |
+
Dmeta-embedding 模型支持通过 [sentence-transformers](https://www.SBERT.net) 来加载推理:
|
1109 |
+
|
1110 |
+
```
|
1111 |
+
pip install -U sentence-transformers
|
1112 |
+
```
|
1113 |
+
|
1114 |
+
```python
|
1115 |
+
from sentence_transformers import SentenceTransformer
|
1116 |
+
|
1117 |
+
texts1 = ["胡子长得太快怎么办?", "在香港哪里买手表好"]
|
1118 |
+
texts2 = ["胡子长得快怎么办?", "怎样使胡子不浓密!", "香港买手表哪里好", "在杭州手机到哪里买"]
|
1119 |
+
|
1120 |
+
model = SentenceTransformer('DMetaSoul/Dmeta-embedding')
|
1121 |
+
embs1 = model.encode(texts1, normalize_embeddings=True)
|
1122 |
+
embs2 = model.encode(texts2, normalize_embeddings=True)
|
1123 |
+
|
1124 |
+
# 计算两两相似度
|
1125 |
+
similarity = embs1 @ embs2.T
|
1126 |
+
print(similarity)
|
1127 |
+
|
1128 |
+
# 获取 texts1[i] 对应的最相似 texts2[j]
|
1129 |
+
for i in range(len(texts1)):
|
1130 |
+
scores = []
|
1131 |
+
for j in range(len(texts2)):
|
1132 |
+
scores.append([texts2[j], similarity[i][j]])
|
1133 |
+
scores = sorted(scores, key=lambda x:x[1], reverse=True)
|
1134 |
+
|
1135 |
+
print(f"查询文本:{texts1[i]}")
|
1136 |
+
for text2, score in scores:
|
1137 |
+
print(f"相似文本:{text2},打分:{score}")
|
1138 |
+
print()
|
1139 |
+
```
|
1140 |
+
|
1141 |
+
示例输出如下:
|
1142 |
+
|
1143 |
+
```
|
1144 |
+
查询文本:胡子长得太快怎么办?
|
1145 |
+
相似文本:胡子长得快怎么办?,打分:0.9535336494445801
|
1146 |
+
相似文本:怎样使胡子不浓密!,打分:0.6776421070098877
|
1147 |
+
相似文本:香港买手表哪里好,打分:0.2297907918691635
|
1148 |
+
相似文本:在杭州手机到哪里买,打分:0.11386542022228241
|
1149 |
+
|
1150 |
+
查询文本:在香港哪里买手表好
|
1151 |
+
相似文本:香港买手表哪里好,打分:0.9843372106552124
|
1152 |
+
相似文本:在杭州手机到哪里买,打分:0.45211508870124817
|
1153 |
+
相似文本:胡子长得快怎么办?,打分:0.19985519349575043
|
1154 |
+
相似文本:怎样使胡子不浓密!,打分:0.18558596074581146
|
1155 |
+
```
|
1156 |
+
|
1157 |
+
### Langchain
|
1158 |
+
|
1159 |
+
Dmeta-embedding 模型支持通过 LLM 工具框架 [langchain](https://www.langchain.com/) 来加载推理:
|
1160 |
+
|
1161 |
+
```
|
1162 |
+
pip install -U langchain
|
1163 |
+
```
|
1164 |
+
|
1165 |
+
```python
|
1166 |
+
import torch
|
1167 |
+
import numpy as np
|
1168 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
1169 |
+
|
1170 |
+
model_name = "DMetaSoul/Dmeta-embedding"
|
1171 |
+
model_kwargs = {'device': 'cuda' if torch.cuda.is_available() else 'cpu'}
|
1172 |
+
encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
|
1173 |
+
|
1174 |
+
model = HuggingFaceEmbeddings(
|
1175 |
+
model_name=model_name,
|
1176 |
+
model_kwargs=model_kwargs,
|
1177 |
+
encode_kwargs=encode_kwargs,
|
1178 |
+
)
|
1179 |
+
|
1180 |
+
texts1 = ["胡子长得太快怎么办?", "在香港哪里买手表好"]
|
1181 |
+
texts2 = ["胡子长得快怎么办?", "怎样使胡子不浓密!", "香港买手表哪里好", "在杭州手机到哪里买"]
|
1182 |
+
|
1183 |
+
embs1 = model.embed_documents(texts1)
|
1184 |
+
embs2 = model.embed_documents(texts2)
|
1185 |
+
embs1, embs2 = np.array(embs1), np.array(embs2)
|
1186 |
+
|
1187 |
+
# 计算两两相似度
|
1188 |
+
similarity = embs1 @ embs2.T
|
1189 |
+
print(similarity)
|
1190 |
+
|
1191 |
+
# 获取 texts1[i] 对应的最相似 texts2[j]
|
1192 |
+
for i in range(len(texts1)):
|
1193 |
+
scores = []
|
1194 |
+
for j in range(len(texts2)):
|
1195 |
+
scores.append([texts2[j], similarity[i][j]])
|
1196 |
+
scores = sorted(scores, key=lambda x:x[1], reverse=True)
|
1197 |
+
|
1198 |
+
print(f"查询文本:{texts1[i]}")
|
1199 |
+
for text2, score in scores:
|
1200 |
+
print(f"相似文本:{text2},打分:{score}")
|
1201 |
+
print()
|
1202 |
+
```
|
1203 |
+
|
1204 |
+
### HuggingFace Transformers
|
1205 |
+
|
1206 |
+
Dmeta-embedding 模型支持通过 [HuggingFace Transformers](https://huggingface.co/docs/transformers/index) 框架来加载推理:
|
1207 |
+
|
1208 |
+
```
|
1209 |
+
pip install -U transformers
|
1210 |
+
```
|
1211 |
+
|
1212 |
+
```python
|
1213 |
+
import torch
|
1214 |
+
from transformers import AutoTokenizer, AutoModel
|
1215 |
+
|
1216 |
+
|
1217 |
+
def mean_pooling(model_output, attention_mask):
|
1218 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
1219 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
1220 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
1221 |
+
|
1222 |
+
def cls_pooling(model_output):
|
1223 |
+
return model_output[0][:, 0]
|
1224 |
+
|
1225 |
+
|
1226 |
+
texts1 = ["胡子长得太快怎么办?", "在香港哪里买手表好"]
|
1227 |
+
texts2 = ["胡子长得快怎么办?", "怎样使胡子不浓密!", "香港买手表哪里好", "在杭州手机到哪里买"]
|
1228 |
+
|
1229 |
+
tokenizer = AutoTokenizer.from_pretrained('DMetaSoul/Dmeta-embedding')
|
1230 |
+
model = AutoModel.from_pretrained('DMetaSoul/Dmeta-embedding')
|
1231 |
+
model.eval()
|
1232 |
+
|
1233 |
+
with torch.no_grad():
|
1234 |
+
inputs1 = tokenizer(texts1, padding=True, truncation=True, return_tensors='pt')
|
1235 |
+
inputs2 = tokenizer(texts2, padding=True, truncation=True, return_tensors='pt')
|
1236 |
+
|
1237 |
+
model_output1 = model(**inputs1)
|
1238 |
+
model_output2 = model(**inputs2)
|
1239 |
+
embs1, embs2 = cls_pooling(model_output1), cls_pooling(model_output2)
|
1240 |
+
embs1 = torch.nn.functional.normalize(embs1, p=2, dim=1).numpy()
|
1241 |
+
embs2 = torch.nn.functional.normalize(embs2, p=2, dim=1).numpy()
|
1242 |
+
|
1243 |
+
# 计算两两相似度
|
1244 |
+
similarity = embs1 @ embs2.T
|
1245 |
+
print(similarity)
|
1246 |
+
|
1247 |
+
# 获取 texts1[i] 对应的最相似 texts2[j]
|
1248 |
+
for i in range(len(texts1)):
|
1249 |
+
scores = []
|
1250 |
+
for j in range(len(texts2)):
|
1251 |
+
scores.append([texts2[j], similarity[i][j]])
|
1252 |
+
scores = sorted(scores, key=lambda x:x[1], reverse=True)
|
1253 |
+
|
1254 |
+
print(f"查询文本:{texts1[i]}")
|
1255 |
+
for text2, score in scores:
|
1256 |
+
print(f"相似文本:{text2},打分:{score}")
|
1257 |
+
print()
|
1258 |
+
```
|
1259 |
+
|
1260 |
+
## Evaluation
|
1261 |
+
|
1262 |
+
Dmeta-embedding 模型在 [MTEB 中文榜单](https://huggingface.co/spaces/mteb/leaderboard)取得开源第一的成绩(2024.01.25,Baichuan 榜单第一、未开源),具体关于评测数据和代码可参考 MTEB 官方[仓库](https://github.com/embeddings-benchmark/mteb)。
|
1263 |
+
|
1264 |
+
**MTEB Chinese**:
|
1265 |
+
|
1266 |
+
该[榜单数据集](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB)由智源研究院团队(BAAI)收集整理,包含 6 个经典任务共计 35 个中文数据集,涵盖了分类、检索、排序、句对、STS 等任务,是目前 Embedding 模型全方位能力评测的全球权威榜单。
|
1267 |
+
|
1268 |
+
| Model | Vendor | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering |
|
1269 |
+
|:-------------------------------------------------------------------------------------------------------- | ------ |:-------------------:|:-----:|:---------:|:-----:|:------------------:|:--------------:|:---------:|:----------:|
|
1270 |
+
| [Dmeta-embedding](https://huggingface.co/DMetaSoul/Dmeta-embedding) | 数元灵 | 1024 | 67.51 | 70.41 | 64.09 | 88.92 | 70 | 67.17 | 50.96 |
|
1271 |
+
| [gte-large-zh](https://huggingface.co/thenlper/gte-large-zh) | 阿里达摩院 | 1024 | 66.72 | 72.49 | 57.82 | 84.41 | 71.34 | 67.4 | 53.07 |
|
1272 |
+
| [BAAI/bge-large-zh-v1.5](https://huggingface.co/BAAI/bge-large-zh-v1.5) | 智源 | 1024 | 64.53 | 70.46 | 56.25 | 81.6 | 69.13 | 65.84 | 48.99 |
|
1273 |
+
| [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | 智源 | 768 | 63.13 | 69.49 | 53.72 | 79.75 | 68.07 | 65.39 | 47.53 |
|
1274 |
+
| [text-embedding-ada-002(OpenAI)](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings) | OpenAI | 1536 | 53.02 | 52.0 | 43.35 | 69.56 | 64.31 | 54.28 | 45.68 |
|
1275 |
+
| [text2vec-base](https://huggingface.co/shibing624/text2vec-base-chinese) | 个人 | 768 | 47.63 | 38.79 | 43.41 | 67.41 | 62.19 | 49.45 | 37.66 |
|
1276 |
+
| [text2vec-large](https://huggingface.co/GanymedeNil/text2vec-large-chinese) | 个人 | 1024 | 47.36 | 41.94 | 44.97 | 70.86 | 60.66 | 49.16 | 30.02 |
|
1277 |
+
|
1278 |
+
## FAQ
|
1279 |
+
|
1280 |
+
<details>
|
1281 |
+
<summary>1. 为何模型多任务、场景泛化能力优异,可开箱即用适配诸多应用场景?</summary>
|
1282 |
+
|
1283 |
+
<!-- ### 为何模型多任务、场景泛化能力优异,可开箱即用适配诸多应用场景? -->
|
1284 |
+
|
1285 |
+
简单来说,模型优异的泛化能力来自于预训练数据的广泛和多样,以及模型优化时面向多任务场景设计了不同优化目标。
|
1286 |
+
|
1287 |
+
具体来说,技术要点有:
|
1288 |
+
|
1289 |
+
1)首先是大规模弱标签对比学习。业界经验表明开箱即用的语言模型在 Embedding 相关任务上表现不佳,但由于监督数据标注、获取成本较高,因此大规模、高质量的弱标签学习成为一条可选技术路线。通过在互联网上论坛、新闻、问答社区、百科等半结构化数据中提取弱标签,并利用大模型进行低质过滤,得到 10 亿级别弱监督文本对数据。
|
1290 |
+
|
1291 |
+
2)其次是高质量监督学习。我们收集整理了大规模开源标注的语句对数据集,包含百科、教育、金融、医疗、法律、新闻、学术等多个领域共计 3000 万句对样本。同时挖掘难负样本对,借助对比学习更好的进行模型优化。
|
1292 |
+
|
1293 |
+
3)最后是检索任务针对性优化。考虑到搜索、问答以及 RAG 等场景是 Embedding 模型落地的重要应用阵地,为了增强模型跨领域、跨场景的效果性能,我们专门针对检索任务进行了模型优化,核心在于从问答、检索等数据中挖掘难负样本,借助稀疏和稠密检索等多种手段,构造百万级难负样本对数据集,显著提升了模型跨领域的检索性能。
|
1294 |
+
|
1295 |
+
</details>
|
1296 |
+
|
1297 |
+
<details>
|
1298 |
+
<summary>2. 模型可以商用吗?</summary>
|
1299 |
+
|
1300 |
+
<!-- ### 模型可以商用吗 -->
|
1301 |
+
|
1302 |
+
我们的开源模型基于 Apache-2.0 协议,完全支持免费商用。
|
1303 |
+
|
1304 |
+
</details>
|
1305 |
+
|
1306 |
+
<details>
|
1307 |
+
<summary>3. 如何复现 MTEB 评测结果?</summary>
|
1308 |
+
|
1309 |
+
<!-- ### 如何复现 MTEB 评测结果? -->
|
1310 |
+
|
1311 |
+
我们在模型仓库中提供了脚本 mteb_eval.py,您可以直接运行此脚本来复现我们的评测结果。
|
1312 |
+
|
1313 |
+
</details>
|
1314 |
+
|
1315 |
+
<details>
|
1316 |
+
<summary>4. 后续规划有哪些?</summary>
|
1317 |
+
|
1318 |
+
<!-- ### 后续规划有哪些? -->
|
1319 |
+
|
1320 |
+
我们将不断致力于为社区提供效果优异、推理轻量、多场景开箱即用的 Embedding 模型,同时我们也会将 Embedding 逐步整合到目前已经的技术生态中,跟随社区一起成长!
|
1321 |
+
|
1322 |
+
</details>
|
1323 |
+
|
1324 |
+
## Contact
|
1325 |
+
|
1326 |
+
您如果在使用过程中,遇到任何问题,欢迎前往[讨论区](https://huggingface.co/DMetaSoul/Dmeta-embedding/discussions)建言献策。
|
1327 |
+
|
1328 |
+
您也可以联系我们:赵中昊 <[email protected]>, 肖文斌 <[email protected]>, 孙凯 <[email protected]>
|
1329 |
+
|
1330 |
+
## License
|
1331 |
+
|
1332 |
+
Dmeta-embedding 模型采用 Apache-2.0 License,开源模型可以进行免费商用私有部署。
|