xiaowenbin
commited on
Delete mteb_eval_openai.py
Browse files- mteb_eval_openai.py +0 -165
mteb_eval_openai.py
DELETED
@@ -1,165 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import sys
|
3 |
-
import time
|
4 |
-
import hashlib
|
5 |
-
from tqdm import tqdm
|
6 |
-
import numpy as np
|
7 |
-
import requests
|
8 |
-
|
9 |
-
import logging
|
10 |
-
import functools
|
11 |
-
import tiktoken
|
12 |
-
from mteb import MTEB
|
13 |
-
#from sentence_transformers import SentenceTransformer
|
14 |
-
logging.basicConfig(level=logging.INFO)
|
15 |
-
logger = logging.getLogger("main")
|
16 |
-
|
17 |
-
all_task_list = ['Classification', 'Clustering', 'Reranking', 'Retrieval', 'STS', 'PairClassification']
|
18 |
-
if len(sys.argv) > 1:
|
19 |
-
task_list = [t for t in sys.argv[1].split(',') if t in all_task_list]
|
20 |
-
else:
|
21 |
-
task_list = all_task_list
|
22 |
-
|
23 |
-
OPENAI_BASE_URL = os.environ.get('OPENAI_BASE_URL', '')
|
24 |
-
OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY', '')
|
25 |
-
EMB_CACHE_DIR = os.environ.get('EMB_CACHE_DIR', '.cache/embs')
|
26 |
-
os.makedirs(EMB_CACHE_DIR, exist_ok=True)
|
27 |
-
|
28 |
-
def uuid_for_text(text):
|
29 |
-
return hashlib.md5(text.encode('utf8')).hexdigest()
|
30 |
-
|
31 |
-
def count_openai_tokens(text, model="text-embedding-3-large"):
|
32 |
-
encoding = tiktoken.get_encoding("cl100k_base")
|
33 |
-
#encoding = tiktoken.encoding_for_model(model)
|
34 |
-
input_ids = encoding.encode(text)
|
35 |
-
return len(input_ids)
|
36 |
-
|
37 |
-
def request_openai_emb(texts, model="text-embedding-3-large",
|
38 |
-
base_url='https://api.openai.com', prefix_url='/v1/embeddings',
|
39 |
-
timeout=120, retry=3, interval=60, caching=True):
|
40 |
-
if isinstance(texts, str):
|
41 |
-
texts = [texts]
|
42 |
-
|
43 |
-
data = []
|
44 |
-
if caching:
|
45 |
-
for text in texts:
|
46 |
-
emb_file = f"{EMB_CACHE_DIR}/{uuid_for_text(text)}"
|
47 |
-
if os.path.isfile(emb_file) and os.path.getsize(emb_file) > 0:
|
48 |
-
data.append(np.loadtxt(emb_file))
|
49 |
-
if len(texts) == len(data):
|
50 |
-
return data
|
51 |
-
|
52 |
-
url = f"{OPENAI_BASE_URL}{prefix_url}" if OPENAI_BASE_URL else f"{base_url}{prefix_url}"
|
53 |
-
headers = {
|
54 |
-
"Authorization": f"Bearer {OPENAI_API_KEY}",
|
55 |
-
"Content-Type": "application/json"
|
56 |
-
}
|
57 |
-
payload = {"input": texts, "model": model}
|
58 |
-
|
59 |
-
while retry > 0 and len(data) == 0:
|
60 |
-
try:
|
61 |
-
r = requests.post(url, headers=headers, json=payload,
|
62 |
-
timeout=timeout)
|
63 |
-
res = r.json()
|
64 |
-
for x in res["data"]:
|
65 |
-
data.append(np.array(x["embedding"]))
|
66 |
-
except Exception as e:
|
67 |
-
print(f"request openai, retry {retry}, error: {e}", file=sys.stderr)
|
68 |
-
time.sleep(interval)
|
69 |
-
retry -= 1
|
70 |
-
|
71 |
-
if len(data) != len(texts):
|
72 |
-
data = []
|
73 |
-
|
74 |
-
if caching and len(data) > 0:
|
75 |
-
for text, emb in zip(texts, data):
|
76 |
-
emb_file = f"{EMB_CACHE_DIR}/{uuid_for_text(text)}"
|
77 |
-
np.savetxt(emb_file, emb)
|
78 |
-
|
79 |
-
return data
|
80 |
-
|
81 |
-
|
82 |
-
class OpenaiEmbModel:
|
83 |
-
|
84 |
-
def __init__(self, model_name, model_dim, *args, **kwargs):
|
85 |
-
super().__init__(*args, **kwargs)
|
86 |
-
self.model_name = model_name
|
87 |
-
self.model_dim = model_dim
|
88 |
-
|
89 |
-
def encode(self, sentences, batch_size=32, **kwargs):
|
90 |
-
i = 0
|
91 |
-
max_tokens = 8000
|
92 |
-
batch_tokens = 0
|
93 |
-
batch = []
|
94 |
-
batch_list = []
|
95 |
-
while i < len(sentences):
|
96 |
-
num_tokens = count_openai_tokens(sentences[i],
|
97 |
-
model=self.model_name)
|
98 |
-
if batch_tokens+num_tokens > max_tokens:
|
99 |
-
if batch:
|
100 |
-
batch_list.append(batch)
|
101 |
-
if num_tokens > max_tokens:
|
102 |
-
batch = [sentences[i][:2048]]
|
103 |
-
batch_tokens = count_openai_tokens(sentences[i][:2048],
|
104 |
-
model=self.model_name)
|
105 |
-
else:
|
106 |
-
batch = [sentences[i]]
|
107 |
-
batch_tokens = num_tokens
|
108 |
-
else:
|
109 |
-
batch_list.append([sentences[i][:2048]])
|
110 |
-
else:
|
111 |
-
batch.append(sentences[i])
|
112 |
-
batch_tokens += num_tokens
|
113 |
-
i += 1
|
114 |
-
if batch:
|
115 |
-
batch_list.append(batch)
|
116 |
-
#print(len(sentences), sum([len(x) for x in batch_list]))
|
117 |
-
|
118 |
-
#batch_size = min(64, batch_size)
|
119 |
-
#
|
120 |
-
#for i in range(0, len(sentences), batch_size):
|
121 |
-
# batch_texts = sentences[i:i+batch_size]
|
122 |
-
# batch_list.append(batch_texts)
|
123 |
-
|
124 |
-
embs = []
|
125 |
-
waiting = 0
|
126 |
-
for batch_i, batch_texts in enumerate(tqdm(batch_list)):
|
127 |
-
batch_embs = request_openai_emb(batch_texts, model=self.model_name,
|
128 |
-
caching=True, timeout=120, retry=3, interval=60)
|
129 |
-
|
130 |
-
#assert len(batch_texts) == len(batch_embs), "The batch of texts and embs DONT match!"
|
131 |
-
|
132 |
-
if len(batch_texts) == len(batch_embs):
|
133 |
-
embs.extend(batch_embs)
|
134 |
-
waiting = waiting // 2
|
135 |
-
else:
|
136 |
-
print(f"The batch-{batch_i} of texts and embs DONT match! {len(batch_texts)}:{len(batch_embs)}", file=sys.stderr)
|
137 |
-
embs.extend([np.array([0.0 for j in range(self.model_dim)]) for i in range(len(batch_texts))])
|
138 |
-
waiting = 120 if waiting <= 0 else waiting+120
|
139 |
-
|
140 |
-
if waiting > 3600:
|
141 |
-
print(f"Frequently failed, break down!", file=sys.stderr)
|
142 |
-
break
|
143 |
-
if waiting > 0:
|
144 |
-
time.sleep(waiting)
|
145 |
-
|
146 |
-
print(f'Encoded texts:embs={len(sentences)}:{len(embs)}')
|
147 |
-
return embs
|
148 |
-
|
149 |
-
|
150 |
-
model_name = "text-embedding-3-large"
|
151 |
-
model_dim = 3072
|
152 |
-
model = OpenaiEmbModel(model_name, model_dim)
|
153 |
-
|
154 |
-
######
|
155 |
-
# test
|
156 |
-
#####
|
157 |
-
#embs = model.encode(['全国', '北京'])
|
158 |
-
#print(embs)
|
159 |
-
#exit()
|
160 |
-
|
161 |
-
# languages
|
162 |
-
task_langs=["zh", "zh-CN"]
|
163 |
-
|
164 |
-
evaluation = MTEB(task_types=task_list, task_langs=task_langs)
|
165 |
-
evaluation.run(model, output_folder=f"results/zh/{model_name.split('/')[-1]}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|