File size: 4,373 Bytes
3adc41b
 
 
 
aabc494
 
3adc41b
 
 
 
aabc494
 
3adc41b
 
 
 
 
 
 
 
 
 
aabc494
3adc41b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
license: apache-2.0
library_name: peft
tags:
- alignment-handbook
- generated_from_trainer
- trl
- dpo
- generated_from_trainer
base_model: mistralai/Mistral-7B-v0.1
datasets:
- HuggingFaceH4/ultrafeedback_binarized
model-index:
- name: zephyr-7b-gpo-u4-i1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# zephyr-7b-gpo-u4-i1

This model is a fine-tuned version of [DUAL-GPO/zephyr-7b-gpo-update3-i0](https://huggingface.co/DUAL-GPO/zephyr-7b-gpo-update3-i0) on the HuggingFaceH4/ultrafeedback_binarized dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0595
- Rewards/chosen: -0.1134
- Rewards/rejected: -0.1090
- Rewards/accuracies: 0.4030
- Rewards/margins: -0.0044
- Logps/rejected: -276.7458
- Logps/chosen: -289.3788
- Logits/rejected: -1.8514
- Logits/chosen: -2.0125

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.3803        | 0.4   | 100  | 0.0537          | 0.0            | 0.0              | 0.0                | 0.0             | -254.9398      | -266.6976    | -1.8067         | -1.9618       |
| 0.2725        | 0.8   | 200  | 0.0549          | -0.0209        | -0.0219          | 0.4410             | 0.0010          | -259.3280      | -270.8865    | -1.8361         | -1.9947       |
| 0.3013        | 1.2   | 300  | 0.0532          | -0.1669        | -0.1811          | 0.4675             | 0.0141          | -291.1523      | -300.0851    | -1.8278         | -1.9902       |
| 0.3433        | 1.6   | 400  | 0.0523          | -0.1720        | -0.1893          | 0.4780             | 0.0173          | -292.8069      | -301.0948    | -1.8287         | -1.9909       |
| 0.3606        | 2.0   | 500  | 0.0623          | -0.1514        | -0.1465          | 0.4050             | -0.0048         | -284.2478      | -296.9682    | -1.8491         | -2.0112       |
| 0.3038        | 2.4   | 600  | 0.0616          | -0.1610        | -0.1582          | 0.4090             | -0.0029         | -286.5705      | -298.9020    | -1.8490         | -2.0113       |
| 0.3161        | 2.8   | 700  | 0.0613          | -0.1640        | -0.1619          | 0.4125             | -0.0021         | -287.3163      | -299.4932    | -1.8473         | -2.0096       |
| 0.3852        | 3.2   | 800  | 0.0574          | -0.1342        | -0.1354          | 0.4260             | 0.0012          | -282.0106      | -293.5319    | -1.8537         | -2.0157       |
| 0.3359        | 3.6   | 900  | 0.0595          | -0.1131        | -0.1086          | 0.4005             | -0.0044         | -276.6672      | -289.3095    | -1.8507         | -2.0116       |
| 0.3701        | 4.0   | 1000 | 0.0596          | -0.1134        | -0.1090          | 0.4000             | -0.0044         | -276.7309      | -289.3763    | -1.8513         | -2.0123       |
| 0.4025        | 4.4   | 1100 | 0.0596          | -0.1134        | -0.1088          | 0.4030             | -0.0045         | -276.7074      | -289.3722    | -1.8516         | -2.0127       |
| 0.3754        | 4.8   | 1200 | 0.0595          | -0.1136        | -0.1091          | 0.4010             | -0.0044         | -276.7694      | -289.4114    | -1.8515         | -2.0125       |


### Framework versions

- PEFT 0.7.1
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.2