--- tags: - spacy - token-classification - ner language: - en license: mit model-index: - name: en_ner_job_postings results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.8516398746 - name: NER Recall type: recall value: 0.8569711538 - name: NER F Score type: f_score value: 0.8542971968 - task: name: TAG type: token-classification metrics: - name: TAG (XPOS) Accuracy type: accuracy value: 0.9734810915 - task: name: UNLABELED_DEPENDENCIES type: token-classification metrics: - name: Unlabeled Attachment Score (UAS) type: f_score value: 0.9208198801 - task: name: LABELED_DEPENDENCIES type: token-classification metrics: - name: Labeled Attachment Score (LAS) type: f_score value: 0.9027174273 - task: name: SENTS type: token-classification metrics: - name: Sentences F-Score type: f_score value: 0.907098331 library_name: spacy pipeline_tag: text-classification --- # Custom spaCy NER Model for "Profession," "Facility," and "Experience" Entities ### Overview This spaCy-based Named Entity Recognition (NER) model has been custom-trained to recognize and classify entities related to "profession," "facility," and "experience." It is designed to enhance your text analysis capabilities by identifying these specific entity types in unstructured text data. ### Key Features Custom-trained for high accuracy in recognizing "profession," "facility," and "experience" entities. Suitable for various NLP tasks, such as information extraction, content categorization, and more. Can be easily integrated into your existing spaCy-based NLP pipelines. | Feature | Description | | --- | --- | | **Name** | `en_ner_job_postings` | | **Version** | `3.6.0` | | **spaCy** | `>=3.6.0,<3.7.0` | | **Default Pipeline** | `tok2vec`, `tagger`, `parser`, `attribute_ruler`, `lemmatizer`, `ner` | | **Components** | `tok2vec`, `tagger`, `parser`, `senter`, `attribute_ruler`, `lemmatizer`, `ner` | | **Vectors** | 514157 keys, 514157 unique vectors (300 dimensions) | | **License** | `MIT` | ### Usage Installation You can install the custom spaCy NER model using pip: ''' Copy code pip install your-ner-model-name Example Usage Here's how you can use the model for entity recognition in Python: ''' python Copy code import spacy # Load the custom spaCy NER model nlp = spacy.load("your-ner-model-name") # Process your text text = "John Smith is a software engineer at ABC Corp, with over 10 years of experience." doc = nlp(text) # Extract named entities 'for ent in doc.ents: print(f"Entity: {ent.text}, Type: {ent.label_}") Entity Types The model recognizes the following entity types: PROFESSION: Represents professions or job titles. FACILITY: Denotes facilities, buildings, or locations. EXPERIENCE: Identifies mentions of work experience, durations, or qualifications. ' ### Label Scheme
View label scheme (116 labels for 3 components) | Component | Labels | | --- | --- | | **`tagger`** | `$`, `''`, `,`, `-LRB-`, `-RRB-`, `.`, `:`, `ADD`, `AFX`, `CC`, `CD`, `DT`, `EX`, `FW`, `HYPH`, `IN`, `JJ`, `JJR`, `JJS`, `LS`, `MD`, `NFP`, `NN`, `NNP`, `NNPS`, `NNS`, `PDT`, `POS`, `PRP`, `PRP$`, `RB`, `RBR`, `RBS`, `RP`, `SYM`, `TO`, `UH`, `VB`, `VBD`, `VBG`, `VBN`, `VBP`, `VBZ`, `WDT`, `WP`, `WP$`, `WRB`, `XX`, `_SP`, ```` | | **`parser`** | `ROOT`, `acl`, `acomp`, `advcl`, `advmod`, `agent`, `amod`, `appos`, `attr`, `aux`, `auxpass`, `case`, `cc`, `ccomp`, `compound`, `conj`, `csubj`, `csubjpass`, `dative`, `dep`, `det`, `dobj`, `expl`, `intj`, `mark`, `meta`, `neg`, `nmod`, `npadvmod`, `nsubj`, `nsubjpass`, `nummod`, `oprd`, `parataxis`, `pcomp`, `pobj`, `poss`, `preconj`, `predet`, `prep`, `prt`, `punct`, `quantmod`, `relcl`, `xcomp` | | **`ner`** | `CARDINAL`, `DATE`, `EVENT`, `EXPERIENCE`, `FAC`, `FACILITY`, `GPE`, `LANGUAGE`, `LAW`, `LOC`, `MONEY`, `NORP`, `ORDINAL`, `ORG`, `PERCENT`, `PERSON`, `PRODUCT`, `PROFESSION`, `QUANTITY`, `TIME`, `WORK_OF_ART` |
### Accuracy | Type | Score | | --- | --- | | `TOKEN_ACC` | 99.86 | | `TOKEN_P` | 99.57 | | `TOKEN_R` | 99.58 | | `TOKEN_F` | 99.57 | | `TAG_ACC` | 97.35 | | `SENTS_P` | 92.19 | | `SENTS_R` | 89.27 | | `SENTS_F` | 90.71 | | `DEP_UAS` | 92.08 | | `DEP_LAS` | 90.27 | | `ENTS_P` | 85.16 | | `ENTS_R` | 85.70 | | `ENTS_F` | 85.43 |