File size: 2,057 Bytes
5109cb9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
import numpy as np
import pandas as pd
# Defining a simplified quantum Hilbert space for representation
# Example dataset structure: Quantum states, entanglements, connections
# Define example quantum states and operators
states = {
"Q1": [1 / np.sqrt(2), 1 / np.sqrt(2)], # |+> state (superposition)
"Q2": [1, 0], # |0> state
}
# Define an example entanglement operator (Bell State)
entanglement_operator = np.array([[1, 0, 0, 1],
[0, 1, 1, 0],
[0, 1, -1, 0],
[1, 0, 0, -1]]) / np.sqrt(2)
# Combine into a tensor product to represent the combined state
combined_state = np.kron(states["Q1"], states["Q2"])
# Define connections (as an adjacency matrix for relationships)
connections = np.array([[0, 1], # Q1 connected to Q2
[1, 0]])
# Define Hamiltonian for time evolution (simplified for example)
hamiltonian = np.array([[0, 1],
[1, 0]])
# Compute time evolution operator (unitary evolution)
time_step = 1 # Arbitrary time step for example
time_evolution_operator = np.linalg.matrix_power(np.eye(2) - 1j * hamiltonian * time_step, 10)
# Final dataset structure for visualization
dataset = {
"States": states,
"Entanglement Operator": entanglement_operator,
"Combined State": combined_state,
"Connections (Adjacency Matrix)": connections,
"Hamiltonian": hamiltonian,
"Time Evolution Operator": time_evolution_operator
}
# Format for user review as a DataFrame
quantum_data_df = pd.DataFrame({
"Quantum Element": ["State Q1", "State Q2", "Entanglement Operator", "Combined State", "Hamiltonian", "Time Evolution Operator"],
"Representation": [
states["Q1"],
states["Q2"],
entanglement_operator,
combined_state,
hamiltonian,
time_evolution_operator
]
})
import ace_tools as tools; tools.display_dataframe_to_user(name="Exhaustive Quantum Dataset", dataframe=quantum_data_df) |