|
import numpy as np |
|
from qiskit import Aer |
|
from qiskit.algorithms import QAOA |
|
from qiskit_optimization.algorithms import MinimumEigenOptimizer |
|
from qiskit.optimization import QuadraticProgram |
|
from transformers import GPT2LMHeadModel, GPT2Tokenizer |
|
from sklearn.preprocessing import StandardScaler |
|
from sklearn.model_selection import train_test_split |
|
from sklearn.datasets import make_classification |
|
from torch import cuda |
|
|
|
# Quantum Optimization (MaxCut Problem for task optimization) |
|
def create_maxcut_problem(num_nodes, edges, weights): |
|
qp = QuadraticProgram() |
|
for i in range(num_nodes): |
|
qp.binary_var(f'x{i}') |
|
for i, j in edges: |
|
weight = weights.get((i, j), 1) |
|
qp.minimize(constant=0, linear=[], quadratic={(f'x{i}', f'x{j}'): weight}) |
|
return qp |
|
|
|
def quantum_optimization(qp): |
|
backend = Aer.get_backend('statevector_simulator') |
|
qaoa = QAOA(quantum_instance=backend) |
|
optimizer = MinimumEigenOptimizer(qaoa) |
|
result = optimizer.solve(qp) |
|
return result |
|
|
|
# Load Hugging Face GPT-2 model for text generation |
|
def load_hugging_face_model(): |
|
model_name = 'gpt2' |
|
tokenizer = GPT2Tokenizer.from_pretrained(model_name) |
|
model = GPT2LMHeadModel.from_pretrained(model_name) |
|
return model, tokenizer |
|
|
|
# Quantum-enhanced Machine Learning Model |
|
def quantum_machine_learning_model(X_train, y_train, X_test, y_test): |
|
# Classical SVM model as baseline |
|
from sklearn.svm import SVC |
|
clf = SVC(kernel='linear') |
|
clf.fit(X_train, y_train) |
|
score = clf.score(X_test, y_test) |
|
|
|
# Quantum optimization (MaxCut Problem) |
|
maxcut_problem = create_maxcut_problem(4, [(0, 1), (1, 2), (2, 3), (3, 0)], {(0, 1): 1, (1, 2): 1, (2, 3): 1, (3, 0): 1}) |
|
quantum_result = quantum_optimization(maxcut_problem) |
|
|
|
return score, quantum_result |
|
|
|
# Text generation with Hugging Face GPT-2 |
|
def generate_text(prompt, model, tokenizer, max_length=100): |
|
inputs = tokenizer.encode(prompt, return_tensors='pt') |
|
outputs = model.generate(inputs, max_length=max_length, num_return_sequences=1, no_repeat_ngram_size=2, top_p=0.92, temperature=1.0) |
|
return tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
# Uncensored Bot with Quantum Optimization for Efficiency |
|
def quantum_uncensored_bot(): |
|
# Generate synthetic classification data |
|
X, y = make_classification(n_samples=100, n_features=2, n_classes=2, random_state=42) |
|
X = StandardScaler().fit_transform(X) |
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) |
|
|
|
# Run quantum-enhanced machine learning (optimization + SVM) |
|
accuracy, quantum_result = quantum_machine_learning_model(X_train, y_train, X_test, y_test) |
|
|
|
# Load the Hugging Face GPT-2 model |
|
model, tokenizer = load_hugging_face_model() |
|
|
|
# Generate uncensored text |
|
prompt = "This is a sample input to the uncensored AI." |
|
generated_text = generate_text(prompt, model, tokenizer) |
|
|
|
return accuracy, quantum_result, generated_text |
|
|
|
# Execute the bot |
|
accuracy, quantum_result, generated_text = quantum_uncensored_bot() |
|
|
|
# Print results |
|
print(f"Accuracy: {accuracy}") |
|
print(f"Quantum Result: {quantum_result}") |
|
print(f"Generated Text: {generated_text}") |