|
import random |
|
import numpy as np |
|
from sklearn.svm import SVC |
|
from sklearn.model_selection import train_test_split |
|
from sklearn.preprocessing import StandardScaler |
|
from sklearn.datasets import make_classification |
|
from qiskit import Aer |
|
from qiskit.algorithms import QAOA |
|
from qiskit_optimization.algorithms import MinimumEigenOptimizer |
|
from qiskit.optimization import QuadraticProgram |
|
|
|
|
|
def aloha_alignment_check(quantum_result, classical_result): |
|
aloha_acceptance = random.uniform(0, 1) |
|
aloha_tolerance = random.uniform(0, 1) |
|
aloha_responsibility = random.uniform(0, 1) |
|
|
|
|
|
if aloha_acceptance > 0.7 and aloha_tolerance > 0.6 and aloha_responsibility > 0.8: |
|
alignment_status = "Aligned with Aloha Principles (Compassion, Respect, Unity)" |
|
else: |
|
alignment_status = "Misaligned with Aloha Principles" |
|
|
|
return alignment_status |
|
|
|
|
|
def create_maxcut_problem(num_nodes, edges, weights): |
|
qp = QuadraticProgram() |
|
for i in range(num_nodes): |
|
qp.binary_var(f'x{i}') |
|
for i, j in edges: |
|
weight = weights.get((i, j), 1) |
|
qp.minimize(constant=0, linear=[], quadratic={(f'x{i}', f'x{j}'): weight}) |
|
return qp |
|
|
|
def quantum_optimization(qp): |
|
backend = Aer.get_backend('statevector_simulator') |
|
qaoa = QAOA(quantum_instance=backend) |
|
optimizer = MinimumEigenOptimizer(qaoa) |
|
result = optimizer.solve(qp) |
|
return result |
|
|
|
|
|
def hybrid_machine_learning(X_train, y_train, X_test, y_test): |
|
clf = SVC(kernel='linear') |
|
clf.fit(X_train, y_train) |
|
score = clf.score(X_test, y_test) |
|
|
|
|
|
maxcut_problem = create_maxcut_problem(4, [(0, 1), (1, 2), (2, 3), (3, 0)], {(0, 1): 1, (1, 2): 1, (2, 3): 1, (3, 0): 1}) |
|
quantum_result = quantum_optimization(maxcut_problem) |
|
|
|
return score, quantum_result |
|
|
|
|
|
def ai_behavioral_alignment(data, quantum_result): |
|
|
|
aloha_alignment = aloha_alignment_check(quantum_result, data) |
|
return aloha_alignment, quantum_result |
|
|
|
@app.route('/run_model', methods=['POST']) |
|
def run_model(): |
|
|
|
X, y = make_classification(n_samples=100, n_features=2, n_classes=2, n_informative=2, n_redundant=0, random_state=42) |
|
X = StandardScaler().fit_transform(X) |
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) |
|
|
|
|
|
accuracy, quantum_result = hybrid_machine_learning(X_train, y_train, X_test, y_test) |
|
|
|
|
|
alignment, quantum_result = ai_behavioral_alignment(y_test, quantum_result) |
|
|
|
return jsonify({ |
|
'accuracy': accuracy, |
|
'alignment': alignment, |
|
'quantum_result': str(quantum_result) |
|
}) |