Adapters
DaddyAloha commited on
Commit
3a144cc
·
verified ·
1 Parent(s): aedcc7a

Create Quantayomama

Browse files

Self-destruct sequence

Files changed (1) hide show
  1. Quantayomama +88 -0
Quantayomama ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from scipy.integrate import solve_ivp
3
+ from qiskit import Aer, QuantumCircuit, execute
4
+ from qiskit.algorithms import Grover, VQE
5
+ from qiskit.circuit.library import EfficientSU2
6
+ from qiskit.utils import QuantumInstance
7
+ from qiskit.algorithms.optimizers import COBYLA
8
+ from matplotlib import pyplot as plt
9
+ import pennylane as qml
10
+
11
+ class UnifiedQuantumAgent:
12
+ def __init__(self):
13
+ # Initialize Quantum Backend
14
+ self.backend = Aer.get_backend("qasm_simulator")
15
+ self.quantum_instance = QuantumInstance(self.backend)
16
+
17
+ # Quantum Optimization (Grover's Search)
18
+ def grover_search(self, oracle_bits):
19
+ n_qubits = len(oracle_bits)
20
+ circuit = QuantumCircuit(n_qubits)
21
+ circuit.z([i for i, bit in enumerate(oracle_bits) if bit == "1"])
22
+ circuit = Grover(circuit).construct_circuit(None)
23
+ result = execute(circuit, self.backend, shots=1024).result()
24
+ counts = result.get_counts()
25
+ return counts
26
+
27
+ # Variational Quantum Eigensolver (VQE)
28
+ def vqe_solver(self, hamiltonian):
29
+ ansatz = EfficientSU2(num_qubits=2, entanglement="linear")
30
+ optimizer = COBYLA(maxiter=200)
31
+ vqe = VQE(ansatz, optimizer, quantum_instance=self.quantum_instance)
32
+ result = vqe.compute_minimum_eigenvalue(operator=hamiltonian)
33
+ return result
34
+
35
+ # Riemann Zeta Function Oscillation Simulation
36
+ def riemann_oscillation(self, t_span, zeta_func):
37
+ def oscillatory_rhs(t, y):
38
+ return [np.sin(y[0]) - zeta_func(t)]
39
+ solution = solve_ivp(oscillatory_rhs, t_span, [0], t_eval=np.linspace(t_span[0], t_span[1], 500))
40
+ return solution.t, solution.y[0]
41
+
42
+ # PennyLane Quantum Circuit Simulation
43
+ def pennylane_simulation(self, params):
44
+ dev = qml.device("default.qubit", wires=2)
45
+
46
+ @qml.qnode(dev)
47
+ def circuit(params):
48
+ qml.RX(params[0], wires=0)
49
+ qml.RY(params[1], wires=1)
50
+ qml.CNOT(wires=[0, 1])
51
+ return qml.expval(qml.PauliZ(0))
52
+
53
+ return circuit(params)
54
+
55
+ # Visualization Utility
56
+ def plot_results(self, x, y, title, xlabel, ylabel):
57
+ plt.figure(figsize=(8, 6))
58
+ plt.plot(x, y, label="Simulation Data")
59
+ plt.title(title)
60
+ plt.xlabel(xlabel)
61
+ plt.ylabel(ylabel)
62
+ plt.legend()
63
+ plt.grid(True)
64
+ plt.show()
65
+
66
+ # Unified Agent in Action
67
+ if __name__ == "__main__":
68
+ agent = UnifiedQuantumAgent()
69
+
70
+ # Example 1: Grover's Search
71
+ oracle = "1010"
72
+ counts = agent.grover_search(oracle)
73
+ print(f"Grover's Search Results: {counts}")
74
+
75
+ # Example 2: VQE Solver
76
+ from qiskit.opflow import I, Z
77
+ hamiltonian = (Z ^ I) + (I ^ Z)
78
+ vqe_result = agent.vqe_solver(hamiltonian)
79
+ print(f"VQE Optimal Value: {vqe_result.eigenvalue.real}")
80
+
81
+ # Example 3: Riemann Zeta Function Oscillation
82
+ t, y = agent.riemann_oscillation((0, 10), lambda t: np.cos(t))
83
+ agent.plot_results(t, y, "Riemann Zeta Oscillation", "Time", "Amplitude")
84
+
85
+ # Example 4: PennyLane Simulation
86
+ params = [np.pi / 4, np.pi / 3]
87
+ expectation = agent.pennylane_simulation(params)
88
+ print(f"PennyLane Simulation Expectation Value: {expectation}")