import numpy as np from qiskit import Aer from qiskit.algorithms import QAOA from qiskit_optimization.algorithms import MinimumEigenOptimizer from qiskit.optimization import QuadraticProgram from transformers import GPT2LMHeadModel, GPT2Tokenizer from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn.datasets import make_classification from torch import cuda # Quantum Optimization (MaxCut Problem for task optimization) def create_maxcut_problem(num_nodes, edges, weights): qp = QuadraticProgram() for i in range(num_nodes): qp.binary_var(f'x{i}') for i, j in edges: weight = weights.get((i, j), 1) qp.minimize(constant=0, linear=[], quadratic={(f'x{i}', f'x{j}'): weight}) return qp def quantum_optimization(qp): backend = Aer.get_backend('statevector_simulator') qaoa = QAOA(quantum_instance=backend) optimizer = MinimumEigenOptimizer(qaoa) result = optimizer.solve(qp) return result # Load Hugging Face GPT-2 model for text generation def load_hugging_face_model(): model_name = 'gpt2' tokenizer = GPT2Tokenizer.from_pretrained(model_name) model = GPT2LMHeadModel.from_pretrained(model_name) return model, tokenizer # Quantum-enhanced Machine Learning Model def quantum_machine_learning_model(X_train, y_train, X_test, y_test): # Classical SVM model as baseline from sklearn.svm import SVC clf = SVC(kernel='linear') clf.fit(X_train, y_train) score = clf.score(X_test, y_test) # Quantum optimization (MaxCut Problem) maxcut_problem = create_maxcut_problem(4, [(0, 1), (1, 2), (2, 3), (3, 0)], {(0, 1): 1, (1, 2): 1, (2, 3): 1, (3, 0): 1}) quantum_result = quantum_optimization(maxcut_problem) return score, quantum_result # Text generation with Hugging Face GPT-2 def generate_text(prompt, model, tokenizer, max_length=100): inputs = tokenizer.encode(prompt, return_tensors='pt') outputs = model.generate(inputs, max_length=max_length, num_return_sequences=1, no_repeat_ngram_size=2, top_p=0.92, temperature=1.0) return tokenizer.decode(outputs[0], skip_special_tokens=True) # Uncensored Bot with Quantum Optimization for Efficiency def quantum_uncensored_bot(): # Generate synthetic classification data X, y = make_classification(n_samples=100, n_features=2, n_classes=2, random_state=42) X = StandardScaler().fit_transform(X) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) # Run quantum-enhanced machine learning (optimization + SVM) accuracy, quantum_result = quantum_machine_learning_model(X_train, y_train, X_test, y_test) # Load the Hugging Face GPT-2 model model, tokenizer = load_hugging_face_model() # Generate uncensored text prompt = "This is a sample input to the uncensored AI." generated_text = generate_text(prompt, model, tokenizer) return accuracy, quantum_result, generated_text # Execute the bot accuracy, quantum_result, generated_text = quantum_uncensored_bot() # Print results print(f"Accuracy: {accuracy}") print(f"Quantum Result: {quantum_result}") print(f"Generated Text: {generated_text}")