import numpy as np import pandas as pd # Defining a simplified quantum Hilbert space for representation # Example dataset structure: Quantum states, entanglements, connections # Define example quantum states and operators states = { "Q1": [1 / np.sqrt(2), 1 / np.sqrt(2)], # |+> state (superposition) "Q2": [1, 0], # |0> state } # Define an example entanglement operator (Bell State) entanglement_operator = np.array([[1, 0, 0, 1], [0, 1, 1, 0], [0, 1, -1, 0], [1, 0, 0, -1]]) / np.sqrt(2) # Combine into a tensor product to represent the combined state combined_state = np.kron(states["Q1"], states["Q2"]) # Define connections (as an adjacency matrix for relationships) connections = np.array([[0, 1], # Q1 connected to Q2 [1, 0]]) # Define Hamiltonian for time evolution (simplified for example) hamiltonian = np.array([[0, 1], [1, 0]]) # Compute time evolution operator (unitary evolution) time_step = 1 # Arbitrary time step for example time_evolution_operator = np.linalg.matrix_power(np.eye(2) - 1j * hamiltonian * time_step, 10) # Final dataset structure for visualization dataset = { "States": states, "Entanglement Operator": entanglement_operator, "Combined State": combined_state, "Connections (Adjacency Matrix)": connections, "Hamiltonian": hamiltonian, "Time Evolution Operator": time_evolution_operator } # Format for user review as a DataFrame quantum_data_df = pd.DataFrame({ "Quantum Element": ["State Q1", "State Q2", "Entanglement Operator", "Combined State", "Hamiltonian", "Time Evolution Operator"], "Representation": [ states["Q1"], states["Q2"], entanglement_operator, combined_state, hamiltonian, time_evolution_operator ] }) import ace_tools as tools; tools.display_dataframe_to_user(name="Exhaustive Quantum Dataset", dataframe=quantum_data_df)