File size: 3,002 Bytes
fcf97b9 ed3b941 fcf97b9 b1cefa7 fcf97b9 b1cefa7 fcf97b9 b1cefa7 fcf97b9 b1cefa7 fcf97b9 b1cefa7 fcf97b9 b1cefa7 fcf97b9 b1cefa7 80707eb b1cefa7 fcf97b9 b1cefa7 fcf97b9 b1cefa7 fcf97b9 b1cefa7 80707eb fcf97b9 b1cefa7 fcf97b9 b1cefa7 fcf97b9 80707eb fcf97b9 80707eb fcf97b9 80707eb fcf97b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
base_model:
- Qwen/QwQ-32B-Preview
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
license: apache-2.0
language:
- en
metrics:
- accuracy
new_version: Daemontatox/CogitoZ
library_name: transformers
---
![image](./image.webp)
# CogitoZ - Qwen2
## Model Overview
CogitoZ - Qwen2 is a state-of-the-art large language model fine-tuned to excel in advanced reasoning and real-time decision-making tasks. This enhanced version was trained using [Unsloth](https://github.com/unslothai/unsloth), achieving a 2x faster training process. Leveraging Hugging Face's TRL (Transformers Reinforcement Learning) library, CogitoZ combines efficiency with exceptional reasoning performance.
- **Developed by**: Daemontatox
- **License**: Apache 2.0
- **Base Model**: [Qwen/QwQ-32B-Preview](https://huggingface.co/Qwen/QwQ-32B-Preview)
- **Finetuned from**: [Daemontatox/CogitoZ](https://huggingface.co/Daemontatox/CogitoZ)
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
---
## Key Features
1. **Fast Training**: Optimized with Unsloth, achieving a 2x faster training cycle without compromising model quality.
2. **Enhanced Reasoning**: Utilizes advanced chain-of-thought (CoT) reasoning for solving complex problems.
3. **Quantization Ready**: Supports 8-bit and 4-bit quantization for deployment on resource-constrained devices.
4. **Scalable Inference**: Seamless integration with text-generation-inference tools for real-time applications.
---
## Intended Use
### Primary Use Cases
- **Education**: Real-time assistance for complex problem-solving, especially in mathematics and logic.
- **Business**: Supports decision-making, financial modeling, and operational strategy.
- **Healthcare**: Enhances diagnostic accuracy and supports structured clinical reasoning.
- **Legal Analysis**: Simplifies complex legal documents and constructs logical arguments.
### Limitations
- May produce biased outputs if the input prompts contain prejudicial or harmful content.
- Should not be used for real-time, high-stakes autonomous decisions (e.g., robotics or autonomous vehicles).
---
## Technical Details
- **Training Framework**: Hugging Face's Transformers and TRL libraries.
- **Optimization Framework**: Unsloth for faster and efficient training.
- **Language Support**: English.
- **Quantization**: Compatible with 8-bit and 4-bit inference modes for deployment on edge devices.
### Deployment Example
#### Using Hugging Face Transformers:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Daemontatox/CogitoZ"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
prompt = "Explain the Pythagorean theorem step-by-step:"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs)
print(tokenizer.decode(outputs[0], skip_special_tokens=True)) |