File size: 7,322 Bytes
fcf97b9
 
 
 
 
 
 
 
 
cd6c033
 
fcf97b9
 
 
 
 
cd6c033
 
da021dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcf97b9
ed3b941
cd6c033
b1cefa7
fcf97b9
b1cefa7
cd6c033
b1cefa7
fcf97b9
 
 
cd6c033
b1cefa7
fcf97b9
b1cefa7
 
 
fcf97b9
b1cefa7
fcf97b9
 
 
 
b1cefa7
80707eb
b1cefa7
fcf97b9
b1cefa7
fcf97b9
 
 
 
 
b1cefa7
 
fcf97b9
 
b1cefa7
80707eb
 
fcf97b9
b1cefa7
fcf97b9
 
 
 
b1cefa7
fcf97b9
80707eb
fcf97b9
 
 
80707eb
fcf97b9
 
 
80707eb
fcf97b9
 
 
7079c4e
 
 
 
 
 
 
 
 
957568b
495e9ae
957568b
495e9ae
 
 
 
 
957568b
495e9ae
7079c4e
 
da021dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
---
base_model:
- Qwen/QwQ-32B-Preview
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
- Chain-of-thought
- Reasoning
license: apache-2.0
language:
- en
new_version: Daemontatox/CogitoZ
library_name: transformers
datasets:
- PJMixers/Math-Multiturn-100K-ShareGPT
model-index:
- name: CogitoZ
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: wis-k/instruction-following-eval
      split: train
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 39.67
      name: averaged accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FCogitoZ
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: SaylorTwift/bbh
      split: test
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 53.89
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FCogitoZ
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: lighteval/MATH-Hard
      split: test
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 46.3
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FCogitoZ
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      split: train
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 19.35
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FCogitoZ
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 19.94
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FCogitoZ
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 51.03
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FCogitoZ
      name: Open LLM Leaderboard
---
![image](./image.webp)
# CogitoZ - 32B

## Model Overview

CogitoZ - 32B is a state-of-the-art large language model fine-tuned to excel in advanced reasoning and real-time decision-making tasks. This enhanced version was trained using [Unsloth](https://github.com/unslothai/unsloth), achieving a 2x faster training process. Leveraging Hugging Face's TRL (Transformers Reinforcement Learning) library, CogitoZ combines efficiency with exceptional reasoning performance.

- **Developed by**: Daemontatox
- **License**: Apache 2.0
- **Base Model**: [Qwen/QwQ-32B-Preview](https://huggingface.co/Qwen/QwQ-32B-Preview)
- **Finetuned To**: [Daemontatox/CogitoZ](https://huggingface.co/Daemontatox/CogitoZ)

[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)

---

## Key Features

1. **Fast Training**: Optimized with Unsloth, achieving a 2x faster training cycle without compromising model quality.
2. **Enhanced Reasoning**: Utilizes advanced chain-of-thought (CoT) reasoning for solving complex problems.
3. **Quantization Ready**: Supports 8-bit and 4-bit quantization for deployment on resource-constrained devices.
4. **Scalable Inference**: Seamless integration with text-generation-inference tools for real-time applications.

---

## Intended Use

### Primary Use Cases
- **Education**: Real-time assistance for complex problem-solving, especially in mathematics and logic.
- **Business**: Supports decision-making, financial modeling, and operational strategy.
- **Healthcare**: Enhances diagnostic accuracy and supports structured clinical reasoning.
- **Legal Analysis**: Simplifies complex legal documents and constructs logical arguments.

### Limitations
- May produce biased outputs if the input prompts contain prejudicial or harmful content.
- Should not be used for real-time, high-stakes autonomous decisions (e.g., robotics or autonomous vehicles).

---

## Technical Details

- **Training Framework**: Hugging Face's Transformers and TRL libraries.
- **Optimization Framework**: Unsloth for faster and efficient training.
- **Language Support**: English.
- **Quantization**: Compatible with 8-bit and 4-bit inference modes for deployment on edge devices.

### Deployment Example

#### Using Hugging Face Transformers:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "Daemontatox/CogitoZ"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

prompt = "Explain the Pythagorean theorem step-by-step:"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```

## Optimized Inference:
Install the transformers and text-generation-inference libraries.
Deploy on servers or edge devices using quantized models for optimal performance.
Training Data
The fine-tuning process utilized reasoning-specific datasets, including:


 **MATH Dataset**: Focused on logical and mathematical problems.
 
 **Custom Corpora**: Tailored datasets for multi-domain reasoning and structured problem-solving.


## Ethical Considerations
**Bias Awareness** **->** The model reflects biases present in the training data. Users should carefully evaluate outputs in sensitive contexts.

**Safe Deployment** **->**  Not recommended for generating harmful or unethical content.

## Acknowledgments
This model was developed with contributions from Daemontatox and the Unsloth team, utilizing state-of-the-art techniques in fine-tuning and optimization.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/Daemontatox__CogitoZ-details)!
Summarized results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q=Daemontatox%2FCogitoZ&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc)!

|      Metric       |Value (%)|
|-------------------|--------:|
|**Average**        |    38.36|
|IFEval (0-Shot)    |    39.67|
|BBH (3-Shot)       |    53.89|
|MATH Lvl 5 (4-Shot)|    46.30|
|GPQA (0-shot)      |    19.35|
|MuSR (0-shot)      |    19.94|
|MMLU-PRO (5-shot)  |    51.03|