File size: 7,322 Bytes
fcf97b9 cd6c033 fcf97b9 cd6c033 da021dc fcf97b9 ed3b941 cd6c033 b1cefa7 fcf97b9 b1cefa7 cd6c033 b1cefa7 fcf97b9 cd6c033 b1cefa7 fcf97b9 b1cefa7 fcf97b9 b1cefa7 fcf97b9 b1cefa7 80707eb b1cefa7 fcf97b9 b1cefa7 fcf97b9 b1cefa7 fcf97b9 b1cefa7 80707eb fcf97b9 b1cefa7 fcf97b9 b1cefa7 fcf97b9 80707eb fcf97b9 80707eb fcf97b9 80707eb fcf97b9 7079c4e 957568b 495e9ae 957568b 495e9ae 957568b 495e9ae 7079c4e da021dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
---
base_model:
- Qwen/QwQ-32B-Preview
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
- Chain-of-thought
- Reasoning
license: apache-2.0
language:
- en
new_version: Daemontatox/CogitoZ
library_name: transformers
datasets:
- PJMixers/Math-Multiturn-100K-ShareGPT
model-index:
- name: CogitoZ
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: wis-k/instruction-following-eval
split: train
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 39.67
name: averaged accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FCogitoZ
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: SaylorTwift/bbh
split: test
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 53.89
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FCogitoZ
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: lighteval/MATH-Hard
split: test
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 46.3
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FCogitoZ
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
split: train
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 19.35
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FCogitoZ
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 19.94
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FCogitoZ
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 51.03
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FCogitoZ
name: Open LLM Leaderboard
---
![image](./image.webp)
# CogitoZ - 32B
## Model Overview
CogitoZ - 32B is a state-of-the-art large language model fine-tuned to excel in advanced reasoning and real-time decision-making tasks. This enhanced version was trained using [Unsloth](https://github.com/unslothai/unsloth), achieving a 2x faster training process. Leveraging Hugging Face's TRL (Transformers Reinforcement Learning) library, CogitoZ combines efficiency with exceptional reasoning performance.
- **Developed by**: Daemontatox
- **License**: Apache 2.0
- **Base Model**: [Qwen/QwQ-32B-Preview](https://huggingface.co/Qwen/QwQ-32B-Preview)
- **Finetuned To**: [Daemontatox/CogitoZ](https://huggingface.co/Daemontatox/CogitoZ)
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
---
## Key Features
1. **Fast Training**: Optimized with Unsloth, achieving a 2x faster training cycle without compromising model quality.
2. **Enhanced Reasoning**: Utilizes advanced chain-of-thought (CoT) reasoning for solving complex problems.
3. **Quantization Ready**: Supports 8-bit and 4-bit quantization for deployment on resource-constrained devices.
4. **Scalable Inference**: Seamless integration with text-generation-inference tools for real-time applications.
---
## Intended Use
### Primary Use Cases
- **Education**: Real-time assistance for complex problem-solving, especially in mathematics and logic.
- **Business**: Supports decision-making, financial modeling, and operational strategy.
- **Healthcare**: Enhances diagnostic accuracy and supports structured clinical reasoning.
- **Legal Analysis**: Simplifies complex legal documents and constructs logical arguments.
### Limitations
- May produce biased outputs if the input prompts contain prejudicial or harmful content.
- Should not be used for real-time, high-stakes autonomous decisions (e.g., robotics or autonomous vehicles).
---
## Technical Details
- **Training Framework**: Hugging Face's Transformers and TRL libraries.
- **Optimization Framework**: Unsloth for faster and efficient training.
- **Language Support**: English.
- **Quantization**: Compatible with 8-bit and 4-bit inference modes for deployment on edge devices.
### Deployment Example
#### Using Hugging Face Transformers:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Daemontatox/CogitoZ"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
prompt = "Explain the Pythagorean theorem step-by-step:"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Optimized Inference:
Install the transformers and text-generation-inference libraries.
Deploy on servers or edge devices using quantized models for optimal performance.
Training Data
The fine-tuning process utilized reasoning-specific datasets, including:
**MATH Dataset**: Focused on logical and mathematical problems.
**Custom Corpora**: Tailored datasets for multi-domain reasoning and structured problem-solving.
## Ethical Considerations
**Bias Awareness** **->** The model reflects biases present in the training data. Users should carefully evaluate outputs in sensitive contexts.
**Safe Deployment** **->** Not recommended for generating harmful or unethical content.
## Acknowledgments
This model was developed with contributions from Daemontatox and the Unsloth team, utilizing state-of-the-art techniques in fine-tuning and optimization.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/Daemontatox__CogitoZ-details)!
Summarized results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q=Daemontatox%2FCogitoZ&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc)!
| Metric |Value (%)|
|-------------------|--------:|
|**Average** | 38.36|
|IFEval (0-Shot) | 39.67|
|BBH (3-Shot) | 53.89|
|MATH Lvl 5 (4-Shot)| 46.30|
|GPQA (0-shot) | 19.35|
|MuSR (0-shot) | 19.94|
|MMLU-PRO (5-shot) | 51.03|
|