Daemontatox
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -10,12 +10,52 @@ language:
|
|
10 |
- en
|
11 |
---
|
12 |
|
13 |
-
|
14 |
|
15 |
-
|
16 |
-
- **License:** apache-2.0
|
17 |
-
- **Finetuned from model :** unsloth/llama-3.2-11b-vision-instruct-unsloth-bnb-4bit
|
18 |
|
19 |
-
|
20 |
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
- en
|
11 |
---
|
12 |
|
13 |
+
![imae](./image.webp)
|
14 |
|
15 |
+
# Finetuned Vision Model: unsloth/llama-3.2-11b-vision-instruct
|
|
|
|
|
16 |
|
17 |
+
## Overview
|
18 |
|
19 |
+
This model is a finetuned version of `unsloth/llama-3.2-11b-vision-instruct-unsloth-bnb-4bit`, optimized for vision-based instruction tasks.
|
20 |
+
It was trained 2x faster using [Unsloth](https://github.com/unslothai/unsloth) and Hugging Face's TRL library, enabling efficient large model adaptation while maintaining precision and accuracy.
|
21 |
+
|
22 |
+
![Unsloth Logo](https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png)
|
23 |
+
|
24 |
+
## Key Features
|
25 |
+
- **Model Type**: Multimodal LLama-based Vision Instruction Model
|
26 |
+
- **License**: Apache-2.0
|
27 |
+
- **Base Model**: unsloth/llama-3.2-11b-vision-instruct-unsloth-bnb-4bit
|
28 |
+
- **Developed by**: Daemontatox
|
29 |
+
- **Language**: English
|
30 |
+
|
31 |
+
## Training Details
|
32 |
+
- **Framework**: Hugging Face Transformers + TRL
|
33 |
+
- **Optimization**: Unsloth methodology for accelerated finetuning
|
34 |
+
- **Quantization**: 4-bit model, enabling deployment on resource-constrained devices
|
35 |
+
- **Dataset**: Vision-specific instruction tasks (details to be added by user if public)
|
36 |
+
|
37 |
+
## Performance Metrics
|
38 |
+
- **Inference Speed**: Optimized for low-latency environments
|
39 |
+
- **Accuracy**: Improved on vision-related benchmarks (details TBD based on evaluation)
|
40 |
+
- **Model Size**: Lightweight due to quantization
|
41 |
+
|
42 |
+
## Applications
|
43 |
+
- Vision-based interactive AI
|
44 |
+
- Instruction-following tasks with multimodal input
|
45 |
+
- Resource-constrained deployment (e.g., edge devices)
|
46 |
+
|
47 |
+
## How to Use
|
48 |
+
To load and use the model:
|
49 |
+
```python
|
50 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
51 |
+
|
52 |
+
model_name = "your_model_repository_name"
|
53 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
54 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", load_in_4bit=True)
|
55 |
+
|
56 |
+
# Example usage
|
57 |
+
input_text = "Describe the image in detail:"
|
58 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
59 |
+
outputs = model.generate(**inputs)
|
60 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
61 |
+
```
|