--- base_model: unsloth/llama-3.2-11b-vision-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - mllama license: apache-2.0 language: - en --- ![imae](./image.webp) # Finetuned Vision Model: unsloth/llama-3.2-11b-vision-instruct ## Overview This model is a finetuned version of `unsloth/llama-3.2-11b-vision-instruct-unsloth-bnb-4bit`, optimized for vision-based instruction tasks. It was trained 2x faster using [Unsloth](https://github.com/unslothai/unsloth) and Hugging Face's TRL library, enabling efficient large model adaptation while maintaining precision and accuracy. ![Unsloth Logo](https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png) ## Key Features - **Model Type**: Multimodal LLama-based Vision Instruction Model - **License**: Apache-2.0 - **Base Model**: unsloth/llama-3.2-11b-vision-instruct-unsloth-bnb-4bit - **Developed by**: Daemontatox - **Language**: English ## Training Details - **Framework**: Hugging Face Transformers + TRL - **Optimization**: Unsloth methodology for accelerated finetuning - **Quantization**: 4-bit model, enabling deployment on resource-constrained devices - **Dataset**: Vision-specific instruction tasks (details to be added by user if public) ## Performance Metrics - **Inference Speed**: Optimized for low-latency environments - **Accuracy**: Improved on vision-related benchmarks (details TBD based on evaluation) - **Model Size**: Lightweight due to quantization ## Applications - Vision-based interactive AI - Instruction-following tasks with multimodal input - Resource-constrained deployment (e.g., edge devices) ## How to Use To load and use the model: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "your_model_repository_name" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", load_in_4bit=True) # Example usage input_text = "Describe the image in detail:" inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```