DandinPower
commited on
End of training
Browse files
README.md
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- zh
|
4 |
+
license: other
|
5 |
+
library_name: peft
|
6 |
+
tags:
|
7 |
+
- trl
|
8 |
+
- sft
|
9 |
+
- nycu-112-2-deeplearning-hw2
|
10 |
+
- generated_from_trainer
|
11 |
+
base_model: taide/Llama3-TAIDE-LX-8B-Chat-Alpha1
|
12 |
+
datasets:
|
13 |
+
- DandinPower/ZH-Reading-Comprehension-Llama-Instruct
|
14 |
+
model-index:
|
15 |
+
- name: taide_llama3_8b_lora_completion_only
|
16 |
+
results: []
|
17 |
+
---
|
18 |
+
|
19 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
20 |
+
should probably proofread and complete it, then remove this comment. -->
|
21 |
+
|
22 |
+
# taide_llama3_8b_lora_completion_only
|
23 |
+
|
24 |
+
This model is a fine-tuned version of [taide/Llama3-TAIDE-LX-8B-Chat-Alpha1](https://huggingface.co/taide/Llama3-TAIDE-LX-8B-Chat-Alpha1) on the DandinPower/ZH-Reading-Comprehension-Llama-Instruct dataset.
|
25 |
+
It achieves the following results on the evaluation set:
|
26 |
+
- Loss: 0.0968
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 0.0001
|
46 |
+
- train_batch_size: 1
|
47 |
+
- eval_batch_size: 1
|
48 |
+
- seed: 42
|
49 |
+
- distributed_type: multi-GPU
|
50 |
+
- num_devices: 2
|
51 |
+
- gradient_accumulation_steps: 8
|
52 |
+
- total_train_batch_size: 16
|
53 |
+
- total_eval_batch_size: 2
|
54 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
55 |
+
- lr_scheduler_type: linear
|
56 |
+
- lr_scheduler_warmup_steps: 700
|
57 |
+
- num_epochs: 3.0
|
58 |
+
|
59 |
+
### Training results
|
60 |
+
|
61 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
62 |
+
|:-------------:|:------:|:----:|:---------------:|
|
63 |
+
| 0.1474 | 0.3690 | 250 | 0.1201 |
|
64 |
+
| 0.1072 | 0.7380 | 500 | 0.1581 |
|
65 |
+
| 0.098 | 1.1070 | 750 | 0.1148 |
|
66 |
+
| 0.0963 | 1.4760 | 1000 | 0.1044 |
|
67 |
+
| 0.0502 | 1.8450 | 1250 | 0.1064 |
|
68 |
+
| 0.05 | 2.2140 | 1500 | 0.1017 |
|
69 |
+
| 0.0239 | 2.5830 | 1750 | 0.1015 |
|
70 |
+
| 0.0443 | 2.9520 | 2000 | 0.0968 |
|
71 |
+
|
72 |
+
|
73 |
+
### Framework versions
|
74 |
+
|
75 |
+
- PEFT 0.10.0
|
76 |
+
- Transformers 4.40.0
|
77 |
+
- Pytorch 2.2.2+cu121
|
78 |
+
- Datasets 2.19.0
|
79 |
+
- Tokenizers 0.19.1
|