File size: 6,451 Bytes
810cc75 e40b4f0 810cc75 e40b4f0 810cc75 e40b4f0 810cc75 e40b4f0 810cc75 e40b4f0 810cc75 e40b4f0 810cc75 2f4c562 bc2a85a 2f4c562 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
# Generated 2022-10-08 from:
# /home/xportes/projects/speechbrain/recipes/LJSpeech/TTS/tacotron2/hparams/train.yaml
# yamllint disable
############################################################################
# Model: Tacotron2
# Tokens: Raw characters (English text)
# losses: Transducer
# Training: LJSpeech
# Authors: Georges Abous-Rjeili, Artem Ploujnikov, Yingzhi Wang
# ############################################################################
###################################
# Experiment Parameters and setup #
###################################
seed: 9234
__set_seed: !apply:torch.manual_seed [9234]
output_folder: ./results/tacotron2/9234
save_folder: ./results/tacotron2/9234/save
train_log: ./results/tacotron2/9234/train_log.txt
epochs: 750
keep_checkpoint_interval: 50
###################################
# Progress Samples #
###################################
# Progress samples are used to monitor the progress
# of an ongoing training session by outputting samples
# of spectrograms, alignments, etc at regular intervals
# Whether to enable progress samples
progress_samples: true
# The path where the samples will be stored
progress_sample_path: ./results/tacotron2/9234/samples
# The interval, in epochs. For instance, if it is set to 5,
# progress samples will be output every 5 epochs
progress_samples_interval: 1
# The sample size for raw batch samples saved in batch.pth
# (useful mostly for model debugging)
progress_batch_sample_size: 3
#################################
# Data files and pre-processing #
#################################
data_folder: ../../../../LJSpeech-1.1
# e.g, /localscratch/ljspeech
train_json: ./results/tacotron2/9234/save/train.json
valid_json: ./results/tacotron2/9234/save/valid.json
test_json: ./results/tacotron2/9234/save/test.json
splits: [train, valid]
split_ratio: [90, 10]
skip_prep: false
# Use the original preprocessing from nvidia
# The cleaners to be used (applicable to nvidia only)
text_cleaners: [english_cleaners]
################################
# Audio Parameters #
################################
sample_rate: 22050
hop_length: 256
win_length: 1024
n_mel_channels: 80
n_fft: 1024
mel_fmin: 0.0
mel_fmax: 8000.0
mel_normalized:
power: 1
norm: slaney
mel_scale: slaney
dynamic_range_compression: true
################################
# Optimization Hyperparameters #
################################
learning_rate: 0.001
weight_decay: 0.000006
batch_size: 64 #minimum 2
mask_padding: true
guided_attention_sigma: 0.2
guided_attention_weight: 50.0
guided_attention_weight_half_life: 10.
guided_attention_hard_stop: 50
gate_loss_weight: 1.0
train_dataloader_opts:
batch_size: 64
drop_last: false #True #False
num_workers: 8
collate_fn: !new:speechbrain.lobes.models.Tacotron2.TextMelCollate
valid_dataloader_opts:
batch_size: 64
num_workers: 8
collate_fn: !new:speechbrain.lobes.models.Tacotron2.TextMelCollate
test_dataloader_opts:
batch_size: 64
num_workers: 8
collate_fn: !new:speechbrain.lobes.models.Tacotron2.TextMelCollate
################################
# Model Parameters and model #
################################
n_symbols: 150 #fixed depending on symbols in textToSequence
symbols_embedding_dim: 512
# Encoder parameters
encoder_kernel_size: 5
encoder_n_convolutions: 3
encoder_embedding_dim: 512
# Decoder parameters
# The number of frames in the target per encoder step
n_frames_per_step: 1
decoder_rnn_dim: 1024
prenet_dim: 256
max_decoder_steps: 1000
gate_threshold: 0.5
p_attention_dropout: 0.1
p_decoder_dropout: 0.1
decoder_no_early_stopping: false
# Attention parameters
attention_rnn_dim: 1024
attention_dim: 128
# Location Layer parameters
attention_location_n_filters: 32
attention_location_kernel_size: 31
# Mel-post processing network parameters
postnet_embedding_dim: 512
postnet_kernel_size: 5
postnet_n_convolutions: 5
mel_spectogram: !name:speechbrain.lobes.models.Tacotron2.mel_spectogram
sample_rate: 22050
hop_length: 256
win_length: 1024
n_fft: 1024
n_mels: 80
f_min: 0.0
f_max: 8000.0
power: 1
normalized:
norm: slaney
mel_scale: slaney
compression: true
#model
model: &id002 !new:speechbrain.lobes.models.Tacotron2.Tacotron2
#optimizer
mask_padding: true
n_mel_channels: 80
# symbols
n_symbols: 150
symbols_embedding_dim: 512
# encoder
encoder_kernel_size: 5
encoder_n_convolutions: 3
encoder_embedding_dim: 512
# attention
attention_rnn_dim: 1024
attention_dim: 128
# attention location
attention_location_n_filters: 32
attention_location_kernel_size: 31
# decoder
n_frames_per_step: 1
decoder_rnn_dim: 1024
prenet_dim: 256
max_decoder_steps: 1000
gate_threshold: 0.5
p_attention_dropout: 0.1
p_decoder_dropout: 0.1
# postnet
postnet_embedding_dim: 512
postnet_kernel_size: 5
postnet_n_convolutions: 5
decoder_no_early_stopping: false
guided_attention_scheduler: &id001 !new:speechbrain.nnet.schedulers.StepScheduler
initial_value: 50.0
half_life: 10.
criterion: !new:speechbrain.lobes.models.Tacotron2.Loss
gate_loss_weight: 1.0
guided_attention_weight: 50.0
guided_attention_sigma: 0.2
guided_attention_scheduler: *id001
guided_attention_hard_stop: 50
modules:
model: *id002
opt_class: !name:torch.optim.Adam
lr: 0.001
weight_decay: 0.000006
#epoch object
epoch_counter: &id003 !new:speechbrain.utils.epoch_loop.EpochCounter
limit: 750
train_logger: !new:speechbrain.utils.train_logger.FileTrainLogger
save_file: ./results/tacotron2/9234/train_log.txt
#annealing_function
lr_annealing: &id004 !new:speechbrain.nnet.schedulers.IntervalScheduler
#infer: !name:speechbrain.lobes.models.Tacotron2.infer
intervals:
- steps: 6000
lr: 0.0005
- steps: 8000
lr: 0.0003
- steps: 10000
lr: 0.0001
#checkpointer
checkpointer: !new:speechbrain.utils.checkpoints.Checkpointer
checkpoints_dir: ./results/tacotron2/9234/save
recoverables:
model: *id002
counter: *id003
scheduler: *id004
progress_sample_logger: !new:speechbrain.utils.train_logger.ProgressSampleLogger
output_path: ./results/tacotron2/9234/samples
batch_sample_size: 3
formats:
raw_batch: raw
text_to_sequence: !name:text_to_sequence.text_to_sequence
pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
loadables:
model: !ref <model>
paths:
model: Daporte/speechbrain_tacotron2_exp/model.ckpt
|