File size: 2,657 Bytes
13845f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
language:
- en
license: apache-2.0
tags:
- LLMs
- mistral
- math
- Intel
- llama-cpp
- gguf-my-repo
base_model: Intel/neural-chat-7b-v3-2
datasets:
- meta-math/MetaMathQA
model-index:
- name: neural-chat-7b-v3-2
  results:
  - task:
      type: Large Language Model
      name: Large Language Model
    dataset:
      name: meta-math/MetaMathQA
      type: meta-math/MetaMathQA
    metrics:
    - type: ARC (25-shot)
      value: 67.49
      name: ARC (25-shot)
      verified: true
    - type: HellaSwag (10-shot)
      value: 83.92
      name: HellaSwag (10-shot)
      verified: true
    - type: MMLU (5-shot)
      value: 63.55
      name: MMLU (5-shot)
      verified: true
    - type: TruthfulQA (0-shot)
      value: 59.68
      name: TruthfulQA (0-shot)
      verified: true
    - type: Winogrande (5-shot)
      value: 79.95
      name: Winogrande (5-shot)
      verified: true
    - type: GSM8K (5-shot)
      value: 55.12
      name: GSM8K (5-shot)
      verified: true
---

# DarkJanissary/neural-chat-7b-v3-2-Q6_K-GGUF
This model was converted to GGUF format from [`Intel/neural-chat-7b-v3-2`](https://huggingface.co/Intel/neural-chat-7b-v3-2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/Intel/neural-chat-7b-v3-2) for more details on the model.

## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)

```bash
brew install llama.cpp

```
Invoke the llama.cpp server or the CLI.

### CLI:
```bash
llama --hf-repo DarkJanissary/neural-chat-7b-v3-2-Q6_K-GGUF --hf-file neural-chat-7b-v3-2-q6_k.gguf -p "The meaning to life and the universe is"
```

### Server:
```bash
llama-server --hf-repo DarkJanissary/neural-chat-7b-v3-2-Q6_K-GGUF --hf-file neural-chat-7b-v3-2-q6_k.gguf -c 2048
```

Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```

Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```

Step 3: Run inference through the main binary.
```
./main --hf-repo DarkJanissary/neural-chat-7b-v3-2-Q6_K-GGUF --hf-file neural-chat-7b-v3-2-q6_k.gguf -p "The meaning to life and the universe is"
```
or 
```
./server --hf-repo DarkJanissary/neural-chat-7b-v3-2-Q6_K-GGUF --hf-file neural-chat-7b-v3-2-q6_k.gguf -c 2048
```