DarkRodry commited on
Commit
c6b0539
1 Parent(s): 3205845

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaPickAndPlace-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaPickAndPlace-v3
16
+ type: PandaPickAndPlace-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -50.00 +/- 0.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaPickAndPlace-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaPickAndPlace-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaPickAndPlace-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c0cf43bc6bf3a81ddaee43c41fc00142be607008e01b283710c6cbd8595dad90
3
+ size 123242
a2c-PandaPickAndPlace-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaPickAndPlace-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7afda99e9000>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7afda99f2f80>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1693767373999401778,
28
+ "learning_rate": 0.001,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAx5jZvYdkr74DWjM+3z9Rv6yCKT95VjM+ElAvv3m0rb9AODI+CZGRPmTG/j1QWTM+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAYktWvwZTlr/j2+U+SoMRvxcsgD86/Yu/o0VmvoWRJL86/Yu/r9Z7P8BmDz4Nn5c/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAABwDgu/vYxXvwMGJ78NBHW/vQmcv6fbFz0gf4c/x5jZvYdkr74DWjM+wzIEvG28u7wbLIi7VZJwO2TWmDxgTKI9hJlRvHZQ9Ly8P6M88yhHwEntQ8BIlyi/bgysvtbhmzySUZs8xHuHP98/Ub+sgik/eVYzPu1aAbyt3Lq8kQ2Ou+NBUjs1ZJo83ZyiPf2nYLyQ6f68Pk+jPOMLCr+DfVS/3xAnv9T8YL/kBaW/dXMWPUGEhz8SUC+/ebStv0A4Mj73cYY7/Do3vR9VgT9clLW/htgCwV6ZzT0+eQw94q4wvW2ok0CU+f28v4K/vhZDGbwyQH+/zTiWv/8Err/Sc4M/CZGRPmTG/j1QWTM+z3sDvJK+u7zMCYm7iqNQO5Q7mTwxnKI9cWtgvJDb/rwHqqE8lGgOSwRLE4aUaBJ0lFKUdS4=",
33
+ "achieved_goal": "[[-0.10624843 -0.34256384 0.17514805]\n [-0.81738085 0.66215014 0.17513455]\n [-0.6848155 -1.3570701 0.1740427 ]\n [ 0.28430966 0.12440184 0.17514539]]",
34
+ "desired_goal": "[[-0.83708775 -1.1744087 0.44894323]\n [-0.56840956 1.0013455 -1.0936654 ]\n [-0.22487502 -0.64284545 -1.0936654 ]\n [ 0.98374456 0.1400404 1.1845413 ]]",
35
+ "observation": "[[-5.43189049e-01 -8.41991246e-01 -6.52435482e-01 -9.57093060e-01\n -1.21904719e+00 3.70747112e-02 1.05856705e+00 -1.06248431e-01\n -3.42563838e-01 1.75148055e-01 -8.06874316e-03 -2.29169969e-02\n -4.15564841e-03 3.67083144e-03 1.86569169e-02 7.92472363e-02\n -1.27929486e-02 -2.98235230e-02 1.99278519e-02]\n [-3.11187434e+00 -3.06135774e+00 -6.58558369e-01 -3.36032331e-01\n 1.90285854e-02 1.89597942e-02 1.05846453e+00 -8.17380846e-01\n 6.62150145e-01 1.75134555e-01 -7.89521355e-03 -2.28103045e-02\n -4.33511334e-03 3.20827286e-03 1.88466106e-02 7.94007555e-02\n -1.37119265e-02 -3.11172307e-02 1.99352466e-02]\n [-5.39243877e-01 -8.30040157e-01 -6.52601182e-01 -8.78857851e-01\n -1.28924227e+00 3.67312022e-02 1.05872357e+00 -6.84815526e-01\n -1.35707009e+00 1.74042702e-01 4.10294114e-03 -4.47339863e-02\n 1.01041019e+00 -1.41859007e+00 -8.17786217e+00 1.00390181e-01\n 3.42953131e-02 -4.31355312e-02 4.61430979e+00]\n [-3.10027972e-02 -3.74044389e-01 -9.35437344e-03 -9.97073293e-01\n -1.17360842e+00 -1.35952747e+00 1.02697206e+00 2.84309655e-01\n 1.24401838e-01 1.75145388e-01 -8.02512374e-03 -2.29180194e-02\n -4.18207608e-03 3.18357581e-03 1.87051669e-02 7.93994740e-02\n -1.36974910e-02 -3.11105549e-02 1.97343957e-02]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAFOalvWRAGT4K16M8n7nRPe+jD74K16M8XkWavV7yTT0K16M8U1sgvbVF3rwK16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAkcu8PAZc2z0K16M80GrTvYLNqT3KQD0+NeoSvLeQAD6k+e49lPG+vRjbebwK16M8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAFOalvWRAGT4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAJ+50T3vow++CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAABeRZq9XvJNPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAU1sgvbVF3rwK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=",
44
+ "achieved_goal": "[[-0.08100525 0.1496597 0.02 ]\n [ 0.10240483 -0.1402738 0.02 ]\n [-0.07532762 0.05027997 0.02 ]\n [-0.03914959 -0.02713285 0.02 ]]",
45
+ "desired_goal": "[[ 0.02304629 0.10710911 0.02 ]\n [-0.10323107 0.08291151 0.18481746]\n [-0.00896697 0.12555204 0.11668709]\n [-0.09323421 -0.01524999 0.02 ]]",
46
+ "observation": "[[ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 -8.10052454e-02\n 1.49659693e-01 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 1.02404825e-01\n -1.40273795e-01 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 -7.53276199e-02\n 5.02799675e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 -3.91495936e-02\n -2.71328483e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CrPdD4593KdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrPkCkfs/qdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrPsbiADq4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrPhtWU8msdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrPy7tAs06dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrP4ly7wrldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrQA+VcD8tdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrP2Y+8oQWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrQGTvAoG6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrQMNjkMkQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrQUj+R5kcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrQKCgkC3gdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrQaSDAaegdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrQffNZ/0/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrQn3bmEGrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrQdOj7ALzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrQuDuKGcndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrQzeii7CjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrQ73YDklvdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CrQ8O4PPLQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrQxTbWVeKdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CrQxqEnLJTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrRBiJfpljdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrRHRujynUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrRQCU5dWydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrRFUFjd56dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrRVon0CiidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrRakA5q/NdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrRjKqwQlKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrRYaqjrRjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrRn6dlNDddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrRwfKZDzAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrR5o1cdHUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrRwLg4wRHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrSGWFev6kdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrSRDtoi9qdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrSaKeTV2BdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrSQexnnMddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrSmKGDcubdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrS00ZNwirdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrS+A6U7jldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrS0YdIXj3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrTLsbFS88dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrTX94eLeidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrTgp4rz5HdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrTV8yvcJudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrTmVIAfdRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrTtYdyT6jdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrT2FqBVdYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrTrfqPfbcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrT8WBSUC8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrUByNn5BUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrUKkSElE7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrUAFAeJYUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrUQ+r2g3+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrUWzXJ5midX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrUfjfWMCLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrUU+vpyIYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrUl987ZFodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrUsEsasIWdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CrUsddeIEbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrU0ztkWhzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrUqfSpiqidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrU7LSuyNXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrVBDye7L/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrVJcJlar4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrU+5vLowFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrVPJ7b+LndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrVUa/7BO6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrVc24Vh1DdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrVSga3qiXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrViG4ZuQ7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrVoyflIVedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrVxK4hEBsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrVmnt4RmLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrV3P2GqPwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrV9PRArxzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrWFnI6r/9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrV69D6WPcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrWK+i8FpxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrWQuGbkOqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrWZGbb1yvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrWOetjkMkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrWe57PY4AdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrWkawdKdydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrWsxdyDIzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrWiKXnhbXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrWxzbWVeKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrW2j9n9NvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrW+7h3qzJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrW0lspG4JdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrXEhttQ9BdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrXJejdpIudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrXR3e3x4IdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CrXJ26kIomdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrXHQUHpr2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrXXcRcu8LdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrXlaVdHDrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrXdbN0NjLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrXa1Gsmv4dWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.95,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True True]",
82
+ "bounded_above": "[ True True True True]",
83
+ "_shape": [
84
+ 4
85
+ ],
86
+ "low": "[-1. -1. -1. -1.]",
87
+ "high": "[1. 1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaPickAndPlace-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c500e3bc2f3cbd9a5818d3c01341975989fee22218a48af538ea8d536969fd88
3
+ size 51646
a2c-PandaPickAndPlace-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:320a5604c5e7383043021de574ea9d944a539bcf4eb768a65ad7456a0e24b0ed
3
+ size 52926
a2c-PandaPickAndPlace-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaPickAndPlace-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7afda99e9000>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7afda99f2f80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693767373999401778, "learning_rate": 0.001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAx5jZvYdkr74DWjM+3z9Rv6yCKT95VjM+ElAvv3m0rb9AODI+CZGRPmTG/j1QWTM+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAYktWvwZTlr/j2+U+SoMRvxcsgD86/Yu/o0VmvoWRJL86/Yu/r9Z7P8BmDz4Nn5c/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAABwDgu/vYxXvwMGJ78NBHW/vQmcv6fbFz0gf4c/x5jZvYdkr74DWjM+wzIEvG28u7wbLIi7VZJwO2TWmDxgTKI9hJlRvHZQ9Ly8P6M88yhHwEntQ8BIlyi/bgysvtbhmzySUZs8xHuHP98/Ub+sgik/eVYzPu1aAbyt3Lq8kQ2Ou+NBUjs1ZJo83ZyiPf2nYLyQ6f68Pk+jPOMLCr+DfVS/3xAnv9T8YL/kBaW/dXMWPUGEhz8SUC+/ebStv0A4Mj73cYY7/Do3vR9VgT9clLW/htgCwV6ZzT0+eQw94q4wvW2ok0CU+f28v4K/vhZDGbwyQH+/zTiWv/8Err/Sc4M/CZGRPmTG/j1QWTM+z3sDvJK+u7zMCYm7iqNQO5Q7mTwxnKI9cWtgvJDb/rwHqqE8lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.10624843 -0.34256384 0.17514805]\n [-0.81738085 0.66215014 0.17513455]\n [-0.6848155 -1.3570701 0.1740427 ]\n [ 0.28430966 0.12440184 0.17514539]]", "desired_goal": "[[-0.83708775 -1.1744087 0.44894323]\n [-0.56840956 1.0013455 -1.0936654 ]\n [-0.22487502 -0.64284545 -1.0936654 ]\n [ 0.98374456 0.1400404 1.1845413 ]]", "observation": "[[-5.43189049e-01 -8.41991246e-01 -6.52435482e-01 -9.57093060e-01\n -1.21904719e+00 3.70747112e-02 1.05856705e+00 -1.06248431e-01\n -3.42563838e-01 1.75148055e-01 -8.06874316e-03 -2.29169969e-02\n -4.15564841e-03 3.67083144e-03 1.86569169e-02 7.92472363e-02\n -1.27929486e-02 -2.98235230e-02 1.99278519e-02]\n [-3.11187434e+00 -3.06135774e+00 -6.58558369e-01 -3.36032331e-01\n 1.90285854e-02 1.89597942e-02 1.05846453e+00 -8.17380846e-01\n 6.62150145e-01 1.75134555e-01 -7.89521355e-03 -2.28103045e-02\n -4.33511334e-03 3.20827286e-03 1.88466106e-02 7.94007555e-02\n -1.37119265e-02 -3.11172307e-02 1.99352466e-02]\n [-5.39243877e-01 -8.30040157e-01 -6.52601182e-01 -8.78857851e-01\n -1.28924227e+00 3.67312022e-02 1.05872357e+00 -6.84815526e-01\n -1.35707009e+00 1.74042702e-01 4.10294114e-03 -4.47339863e-02\n 1.01041019e+00 -1.41859007e+00 -8.17786217e+00 1.00390181e-01\n 3.42953131e-02 -4.31355312e-02 4.61430979e+00]\n [-3.10027972e-02 -3.74044389e-01 -9.35437344e-03 -9.97073293e-01\n -1.17360842e+00 -1.35952747e+00 1.02697206e+00 2.84309655e-01\n 1.24401838e-01 1.75145388e-01 -8.02512374e-03 -2.29180194e-02\n -4.18207608e-03 3.18357581e-03 1.87051669e-02 7.93994740e-02\n -1.36974910e-02 -3.11105549e-02 1.97343957e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAFOalvWRAGT4K16M8n7nRPe+jD74K16M8XkWavV7yTT0K16M8U1sgvbVF3rwK16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAkcu8PAZc2z0K16M80GrTvYLNqT3KQD0+NeoSvLeQAD6k+e49lPG+vRjbebwK16M8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAFOalvWRAGT4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAJ+50T3vow++CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAABeRZq9XvJNPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAU1sgvbVF3rwK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.08100525 0.1496597 0.02 ]\n [ 0.10240483 -0.1402738 0.02 ]\n [-0.07532762 0.05027997 0.02 ]\n [-0.03914959 -0.02713285 0.02 ]]", "desired_goal": "[[ 0.02304629 0.10710911 0.02 ]\n [-0.10323107 0.08291151 0.18481746]\n [-0.00896697 0.12555204 0.11668709]\n [-0.09323421 -0.01524999 0.02 ]]", "observation": "[[ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 -8.10052454e-02\n 1.49659693e-01 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 1.02404825e-01\n -1.40273795e-01 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 -7.53276199e-02\n 5.02799675e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 -3.91495936e-02\n -2.71328483e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CrPdD4593KdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrPkCkfs/qdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrPsbiADq4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrPhtWU8msdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrPy7tAs06dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrP4ly7wrldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrQA+VcD8tdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrP2Y+8oQWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrQGTvAoG6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrQMNjkMkQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrQUj+R5kcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrQKCgkC3gdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrQaSDAaegdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrQffNZ/0/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrQn3bmEGrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrQdOj7ALzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrQuDuKGcndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrQzeii7CjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrQ73YDklvdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CrQ8O4PPLQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrQxTbWVeKdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CrQxqEnLJTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrRBiJfpljdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrRHRujynUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrRQCU5dWydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrRFUFjd56dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrRVon0CiidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrRakA5q/NdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrRjKqwQlKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrRYaqjrRjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrRn6dlNDddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrRwfKZDzAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrR5o1cdHUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrRwLg4wRHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrSGWFev6kdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrSRDtoi9qdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrSaKeTV2BdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrSQexnnMddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrSmKGDcubdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrS00ZNwirdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrS+A6U7jldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrS0YdIXj3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrTLsbFS88dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrTX94eLeidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrTgp4rz5HdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrTV8yvcJudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrTmVIAfdRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrTtYdyT6jdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrT2FqBVdYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrTrfqPfbcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrT8WBSUC8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrUByNn5BUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrUKkSElE7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrUAFAeJYUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrUQ+r2g3+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrUWzXJ5midX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrUfjfWMCLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrUU+vpyIYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrUl987ZFodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrUsEsasIWdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CrUsddeIEbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrU0ztkWhzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrUqfSpiqidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrU7LSuyNXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrVBDye7L/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrVJcJlar4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrU+5vLowFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrVPJ7b+LndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrVUa/7BO6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrVc24Vh1DdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrVSga3qiXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrViG4ZuQ7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrVoyflIVedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrVxK4hEBsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrVmnt4RmLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrV3P2GqPwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrV9PRArxzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrWFnI6r/9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrV69D6WPcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrWK+i8FpxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrWQuGbkOqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrWZGbb1yvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrWOetjkMkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrWe57PY4AdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrWkawdKdydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrWsxdyDIzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrWiKXnhbXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrWxzbWVeKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrW2j9n9NvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrW+7h3qzJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrW0lspG4JdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrXEhttQ9BdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrXJejdpIudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrXR3e3x4IdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CrXJ26kIomdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrXHQUHpr2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrXXcRcu8LdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrXlaVdHDrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrXdbN0NjLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrXa1Gsmv4dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.95, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -50.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-03T20:20:11.142439"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7beb0d8905bc24927003d9e4a13b777dcf0554339d58ddf7ff4f8dfa86659313
3
+ size 3013