Darok commited on
Commit
758ef3e
·
verified ·
1 Parent(s): df2f3e6

Upload 7 files

Browse files
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "RwkvForCausalLM"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_rwkv5.Rwkv5Config",
7
+ "AutoModelForCausalLM": "modeling_rwkv5.Rwkv5ForCausalLM"
8
+ },
9
+ "attention_hidden_size": 4096,
10
+ "bos_token_id": 0,
11
+ "context_length": 4096,
12
+ "eos_token_id": 0,
13
+ "head_size": 64,
14
+ "hidden_size": 4096,
15
+ "intermediate_size": null,
16
+ "layer_norm_epsilon": 1e-05,
17
+ "model_type": "rwkv5",
18
+ "model_version": "5_2",
19
+ "num_hidden_layers": 32,
20
+ "rescale_every": 6,
21
+ "tie_word_embeddings": false,
22
+ "transformers_version": "4.34.0",
23
+ "use_cache": true,
24
+ "vocab_size": 65536
25
+ }
configuration_rwkv5.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 The OpenAI Team Authors and HuggingFace Inc. team.
3
+ # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ RWKV configuration"""
17
+
18
+ from transformers.configuration_utils import PretrainedConfig
19
+ from transformers.utils import logging
20
+
21
+
22
+ logger = logging.get_logger(__name__)
23
+
24
+ RWKV5_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
25
+
26
+
27
+ class Rwkv5Config(PretrainedConfig):
28
+ """
29
+ This is the configuration class to store the configuration of a [`Rwkv5Model`]. It is used to instantiate a RWKV5
30
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
31
+ defaults will yield a similar configuration to that of the RWVK-4
32
+ [RWKV/rwkv-5-world-1b5](https://huggingface.co/RWKV/rwkv-5-world-1b5) architecture.
33
+
34
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
35
+ documentation from [`PretrainedConfig`] for more information.
36
+
37
+
38
+ Args:
39
+ vocab_size (`int`, *optional*, defaults to 65536):
40
+ Vocabulary size of the RWKV5 model. Defines the number of different tokens that can be represented by the
41
+ `inputs_ids` passed when calling [`Rwkv5Model`].
42
+ hidden_size (`int`, *optional*, defaults to 768):
43
+ Dimensionality of the embeddings and hidden states.
44
+ num_hidden_layers (`int`, *optional*, defaults to 24):
45
+ Number of hidden layers in the model.
46
+ attention_hidden_size (`int`, *optional*):
47
+ Dimensionality of the attention hidden states. Will default to `hidden_size` if unset.
48
+ num_attention_heads (`int`, *optional*, defaults to 64):
49
+ The attention heads to use in rwkv5 self_attention module.
50
+ head_size (`int`, *optional*, defaults to 64): head_size of rwkv5 self_attention module.
51
+ intermediate_size (`int`, *optional*):
52
+ Dimensionality of the inner feed-forward layers. Will default to 4 times `hidden_size` if unset.
53
+ layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
54
+ The epsilon to use in the layer normalization layers.
55
+ bos_token_id (`int`, *optional*, defaults to 0):
56
+ The id of the beginning of sentence token in the vocabulary. Defaults to 0 as RWKV5 uses the same tokenizer
57
+ as GPTNeoX.
58
+ eos_token_id (`int`, *optional*, defaults to 0):
59
+ The id of the end of sentence token in the vocabulary. Defaults to 0 as RWKV5 uses the same tokenizer as
60
+ GPTNeoX.
61
+ rescale_every (`int`, *optional*, defaults to 6):
62
+ At inference, the hidden states (and weights of the correponding output layers) are divided by 2 every
63
+ `rescale_every` layer. If set to 0 or a negative number, no rescale is done.
64
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
65
+ Whether or not to tie the word embeddings with the input token embeddings.
66
+ use_cache (`bool`, *optional*, defaults to `True`):
67
+ Whether or not the model should return the last state.
68
+
69
+
70
+ Example:
71
+
72
+ ```python
73
+ >>> from transformers import Rwkv5Config, Rwkv5Model
74
+
75
+ >>> # Initializing a Rwkv5 configuration
76
+ >>> configuration = Rwkv5Config()
77
+
78
+ >>> # Initializing a model (with random weights) from the configuration
79
+ >>> model = Rwkv5Model(configuration)
80
+
81
+ >>> # Accessing the model configuration
82
+ >>> configuration = model.config
83
+ ```"""
84
+
85
+ model_type = "rwkv5"
86
+
87
+ def __init__(
88
+ self,
89
+ vocab_size=65536,
90
+ hidden_size=768,
91
+ num_hidden_layers=24,
92
+ attention_hidden_size=None,
93
+ num_attention_heads=64,
94
+ head_size=64,
95
+ intermediate_size=None,
96
+ layer_norm_epsilon=1e-5,
97
+ bos_token_id=0,
98
+ eos_token_id=0,
99
+ rescale_every=6,
100
+ tie_word_embeddings=False,
101
+ use_cache=True,
102
+ **kwargs,
103
+ ):
104
+ self.vocab_size = vocab_size
105
+ self.hidden_size = hidden_size
106
+ self.num_hidden_layers = num_hidden_layers
107
+ self.attention_hidden_size = attention_hidden_size if attention_hidden_size is not None else hidden_size
108
+ self.num_attention_heads = num_attention_heads
109
+ self.head_size = head_size
110
+ self.intermediate_size = None
111
+ self.layer_norm_epsilon = layer_norm_epsilon
112
+ self.rescale_every = rescale_every
113
+ self.use_cache = use_cache
114
+
115
+ self.bos_token_id = bos_token_id
116
+ self.eos_token_id = eos_token_id
117
+
118
+ super().__init__(
119
+ tie_word_embeddings=tie_word_embeddings, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs
120
+ )
generation_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "chat_format": "chatml",
3
+ "eos_token_id": 0,
4
+ "pad_token_id": 0,
5
+ "max_window_size": 4096,
6
+ "max_new_tokens": 4096,
7
+ "do_sample": true,
8
+ "top_k": 0,
9
+ "top_p": 0.1,
10
+ "repetition_penalty": 1.0,
11
+ "transformers_version": "4.31.1"
12
+ }
rwkv_vocab_v20230424.txt ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
tokenization_rwkv_world.py ADDED
@@ -0,0 +1,549 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Tokenization classes for RWKV5."""
16
+
17
+ import json
18
+ import os
19
+ from typing import TYPE_CHECKING, List, Optional, Tuple, Union
20
+
21
+ from transformers.tokenization_utils import PreTrainedTokenizer
22
+ from transformers.tokenization_utils_base import (
23
+ BatchEncoding,
24
+ EncodedInput,
25
+ TextInput,
26
+ TruncationStrategy,
27
+ )
28
+ from transformers.utils import PaddingStrategy, TensorType, logging, to_py_obj
29
+
30
+
31
+ if TYPE_CHECKING:
32
+ from transformers.pipelines.conversational import Conversation
33
+
34
+ logger = logging.get_logger(__name__)
35
+
36
+ VOCAB_FILES_NAMES = {
37
+ "vocab_file": "rwkv_vocab_v20230424.txt",
38
+ }
39
+ PRETRAINED_VOCAB_FILES_MAP = {
40
+ "vocab_file": {
41
+ "RWKV/rwkv-5-world-169m": "https://huggingface.co/RWKV/rwkv-5-world-169m/blob/main/rwkv_vocab_v20230424.txt",
42
+ },
43
+ }
44
+
45
+
46
+ class TRIE:
47
+ __slots__ = tuple("ch,to,values,front".split(","))
48
+ to: list
49
+ values: set
50
+
51
+ def __init__(self, front=None, ch=None):
52
+ self.ch = ch
53
+ self.to = [None for ch in range(256)]
54
+ self.values = set()
55
+ self.front = front
56
+
57
+ def __repr__(self):
58
+ fr = self
59
+ ret = []
60
+ while fr is not None:
61
+ if fr.ch is not None:
62
+ ret.append(fr.ch)
63
+ fr = fr.front
64
+ return "<TRIE %s %s>" % (ret[::-1], self.values)
65
+
66
+ def add(self, key: bytes, idx: int = 0, val=None):
67
+ if idx == len(key):
68
+ if val is None:
69
+ val = key
70
+ self.values.add(val)
71
+ return self
72
+ ch = key[idx]
73
+ if self.to[ch] is None:
74
+ self.to[ch] = TRIE(front=self, ch=ch)
75
+ return self.to[ch].add(key, idx=idx + 1, val=val)
76
+
77
+ def find_longest(self, key: bytes, idx: int = 0):
78
+ u: TRIE = self
79
+ ch: int = key[idx]
80
+
81
+ while u.to[ch] is not None:
82
+ u = u.to[ch]
83
+ idx += 1
84
+ if u.values:
85
+ ret = idx, u, u.values
86
+ if idx == len(key):
87
+ break
88
+ ch = key[idx]
89
+ return ret
90
+
91
+
92
+ class RWKVWorldTokenizer(PreTrainedTokenizer):
93
+ vocab_files_names = VOCAB_FILES_NAMES
94
+ model_input_names = ["input_ids", "attention_mask"]
95
+
96
+ def __init__(self, vocab_file, errors="replace", pad_token="0", **kwargs):
97
+ self.add_bos_token = False
98
+ self.encoder = {}
99
+ sorted = [] # must be already sorted
100
+ with open(vocab_file, "r", encoding="utf-8") as f:
101
+ lines = f.readlines()
102
+ for l in lines:
103
+ idx = int(l[: l.index(" ")])
104
+ x = eval(l[l.index(" ") : l.rindex(" ")])
105
+ x = x.encode("utf-8") if isinstance(x, str) else x
106
+ assert isinstance(x, bytes)
107
+ assert len(x) == int(l[l.rindex(" ") :])
108
+ sorted += [x]
109
+ self.encoder[idx] = x
110
+
111
+ self.decoder = {}
112
+ for k, v in self.encoder.items():
113
+ self.decoder[v] = int(k)
114
+
115
+ self.trie = TRIE()
116
+ for t, i in self.decoder.items():
117
+ _ = self.trie.add(t, val=(t, i))
118
+ self.errors = errors # how to handle errors in decoding
119
+ self.cache = {}
120
+ self.first_max_length = 0
121
+ super().__init__(
122
+ errors=errors,
123
+ **kwargs,
124
+ )
125
+
126
+ @property
127
+ def eos_token_id(self) -> Optional[int]:
128
+ return 0
129
+
130
+ @property
131
+ def eot_token_id(self) -> Optional[int]:
132
+ return 0
133
+
134
+ @property
135
+ def pad_token_id(self) -> Optional[int]:
136
+ return 0
137
+
138
+ @property
139
+ def vocab_size(self):
140
+ return len(self.encoder)
141
+
142
+ def get_vocab(self):
143
+ return dict(self.encoder, **self.added_tokens_encoder)
144
+
145
+ def add_tokens(self, new_tokens, special_tokens: bool = False):
146
+ for token in new_tokens:
147
+ token_id = self.convert_tokens_to_ids(token)
148
+ self.added_tokens_decoder[token_id] = token
149
+
150
+ def convert_ids_to_tokens(self, ids, skip_special_tokens=False):
151
+ if isinstance(ids, int):
152
+ ids = [ids]
153
+ tokens = []
154
+ for id_ in ids:
155
+ if id_ in self.added_tokens_decoder:
156
+ tokens.append(self.added_tokens_decoder[id_])
157
+ else:
158
+ tokens.append(self._convert_id_to_token(id_))
159
+ return tokens
160
+
161
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
162
+ if self.add_bos_token:
163
+ bos_token_ids = [self.bos_token_id]
164
+ else:
165
+ bos_token_ids = []
166
+
167
+ output = bos_token_ids + token_ids_0
168
+
169
+ if token_ids_1 is None:
170
+ return output
171
+
172
+ return output + bos_token_ids + token_ids_1
173
+
174
+ def get_special_tokens_mask(
175
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
176
+ ) -> List[int]:
177
+ """
178
+ Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
179
+ special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.
180
+
181
+ Args:
182
+ token_ids_0 (`List[int]`):
183
+ List of IDs.
184
+ token_ids_1 (`List[int]`, *optional*):
185
+ Optional second list of IDs for sequence pairs.
186
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
187
+ Whether or not the token list is already formatted with special tokens for the model.
188
+
189
+ Returns:
190
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
191
+ """
192
+ if already_has_special_tokens:
193
+ return super().get_special_tokens_mask(
194
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
195
+ )
196
+
197
+ if not self.add_bos_token:
198
+ return super().get_special_tokens_mask(
199
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=False
200
+ )
201
+
202
+ if token_ids_1 is None:
203
+ return [1] + ([0] * len(token_ids_0))
204
+ return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1))
205
+
206
+ def encodeBytes(self, src: bytes):
207
+ idx: int = 0
208
+ tokens = []
209
+ while idx < len(src):
210
+ _idx: int = idx
211
+ idx, _, values = self.trie.find_longest(src, idx)
212
+ assert idx != _idx
213
+ _, token = next(iter(values))
214
+ tokens.append(token)
215
+ return tokens
216
+
217
+ def decodeBytes(self, tokens):
218
+ return b"".join(map(lambda i: self.encoder[i], tokens)) # noqa
219
+
220
+ def _tokenize(self, text, **kwargs):
221
+ """Tokenize a string."""
222
+ return self.encodeBytes(text.encode("utf-8"))
223
+
224
+ def _decode_tokens(self, tokens):
225
+ try:
226
+ return self.decodeBytes(tokens).decode("utf-8")
227
+ except Exception:
228
+ return "\ufffd" # bad utf-8
229
+
230
+ def _decode(
231
+ self,
232
+ token_ids: Union[int, List[int]],
233
+ skip_special_tokens: bool = False,
234
+ **kwargs,
235
+ ) -> str:
236
+ def remove_zeros_from_first_segment(token_ids, first_max_length):
237
+ first_segment = token_ids[:first_max_length]
238
+ first_segment_cleaned = [token for token in first_segment if token != 0]
239
+ return first_segment_cleaned + token_ids[first_max_length:]
240
+
241
+ # Convert inputs to python lists
242
+ token_ids = to_py_obj(token_ids)
243
+ token_ids = remove_zeros_from_first_segment(token_ids, self.first_max_length)
244
+ if isinstance(token_ids, int):
245
+ if token_ids in self.all_special_ids and skip_special_tokens:
246
+ return ""
247
+ return self.encoder.get(token_ids, self.unk_token)
248
+ elif isinstance(token_ids, list):
249
+ self.first_max_length
250
+ out_str = ""
251
+ out_last = 0
252
+ out_tokens = []
253
+ for i, token in enumerate(token_ids):
254
+ if token == 0:
255
+ break
256
+ out_tokens += [token]
257
+ tmp = self._decode_tokens(out_tokens[out_last:])
258
+ if "\ufffd" not in tmp:
259
+ out_str += tmp
260
+ out_last = i + 1
261
+ return out_str
262
+ else:
263
+ return token_ids
264
+
265
+ def _convert_token_to_id(self, token):
266
+ """Converts a token (str) in an id using the vocab."""
267
+ return self.encoder.get(token, self.encoder.get(self.unk_token))
268
+
269
+ def _convert_id_to_token(self, index):
270
+ """Converts an index (integer) in a token (str) using the vocab."""
271
+ return self.decoder.get(index)
272
+
273
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
274
+ if not os.path.exists(save_directory):
275
+ os.mkdir(save_directory)
276
+ if not os.path.isdir(save_directory):
277
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
278
+ return
279
+ vocab_file = os.path.join(
280
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
281
+ )
282
+
283
+ with open(vocab_file, "w", encoding="utf-8") as f:
284
+ for idx, x in self.encoder.items():
285
+ if isinstance(x, str):
286
+ x = x.decode("utf-8")
287
+ line = f"{idx} {repr(x)} {len(x)}\n"
288
+ f.write(line)
289
+
290
+ return (vocab_file,)
291
+
292
+ def prepare_for_tokenization(self, text, **kwargs):
293
+ return (text, kwargs)
294
+
295
+ def _get_padding_truncation_strategies(
296
+ self, padding=False, truncation=None, max_length=None, pad_to_multiple_of=None, verbose=True, **kwargs
297
+ ):
298
+ return PaddingStrategy.LONGEST, TruncationStrategy.DO_NOT_TRUNCATE, -1, kwargs
299
+
300
+ def _encode_plus(
301
+ self,
302
+ text: Union[TextInput, EncodedInput],
303
+ add_special_tokens: bool = True,
304
+ padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
305
+ truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
306
+ max_length: Optional[int] = None,
307
+ stride: int = 0,
308
+ pad_to_multiple_of: Optional[int] = None,
309
+ return_tensors: Optional[Union[str, TensorType]] = None,
310
+ return_token_type_ids: Optional[bool] = None,
311
+ return_attention_mask: Optional[bool] = None,
312
+ return_overflowing_tokens: bool = False,
313
+ return_special_tokens_mask: bool = False,
314
+ return_offsets_mapping: bool = False,
315
+ return_length: bool = False,
316
+ verbose: bool = True,
317
+ **kwargs,
318
+ ) -> BatchEncoding:
319
+ def get_input_ids(text, max_length=None, pad_token_id=0):
320
+ def pad_sequence(seq, max_len, pad_tok):
321
+ return [pad_tok] * (max_len - len(seq)) + seq
322
+
323
+ if isinstance(text, str):
324
+ tokens = self._tokenize(text)
325
+ if max_length is not None:
326
+ tokens = pad_sequence(tokens, max_length, pad_token_id)
327
+ return tokens
328
+
329
+ elif isinstance(text, list) and len(text) > 0 and isinstance(text[0], str):
330
+ tokenized_texts = [self._tokenize(t) for t in text]
331
+ if max_length is None:
332
+ max_length = max(len(t) for t in tokenized_texts)
333
+ return [pad_sequence(t, max_length, pad_token_id) for t in tokenized_texts]
334
+
335
+ elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], int):
336
+ if max_length is not None and len(text) < max_length:
337
+ return pad_sequence(text, max_length, pad_token_id)
338
+ return text
339
+
340
+ else:
341
+ raise ValueError(
342
+ "Input is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers."
343
+ )
344
+
345
+ if return_offsets_mapping:
346
+ raise NotImplementedError(
347
+ "return_offset_mapping is not available when using Python tokenizers. "
348
+ "To use this feature, change your tokenizer to one deriving from "
349
+ "transformers.PreTrainedTokenizerFast. "
350
+ "More information on available tokenizers at "
351
+ "https://github.com/huggingface/transformers/pull/2674"
352
+ )
353
+
354
+ first_ids = get_input_ids(text)
355
+
356
+ return self.prepare_for_model(
357
+ first_ids,
358
+ pair_ids=None,
359
+ add_special_tokens=add_special_tokens,
360
+ padding=padding_strategy.value,
361
+ truncation=truncation_strategy.value,
362
+ max_length=max_length,
363
+ stride=stride,
364
+ pad_to_multiple_of=pad_to_multiple_of,
365
+ return_tensors=return_tensors,
366
+ prepend_batch_axis=True,
367
+ return_attention_mask=return_attention_mask,
368
+ return_token_type_ids=return_token_type_ids,
369
+ return_overflowing_tokens=return_overflowing_tokens,
370
+ return_special_tokens_mask=return_special_tokens_mask,
371
+ return_length=return_length,
372
+ verbose=verbose,
373
+ )
374
+
375
+ def _batch_encode_plus(
376
+ self,
377
+ batch_text_or_text_pairs: Union[
378
+ List[TextInput],
379
+ List[EncodedInput],
380
+ ],
381
+ add_special_tokens: bool = True,
382
+ padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
383
+ truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
384
+ max_length: Optional[int] = None,
385
+ stride: int = 0,
386
+ pad_to_multiple_of: Optional[int] = None,
387
+ return_tensors: Optional[Union[str, TensorType]] = None,
388
+ return_token_type_ids: Optional[bool] = None,
389
+ return_attention_mask: Optional[bool] = None,
390
+ return_overflowing_tokens: bool = False,
391
+ return_special_tokens_mask: bool = False,
392
+ return_offsets_mapping: bool = False,
393
+ return_length: bool = False,
394
+ verbose: bool = True,
395
+ **kwargs,
396
+ ) -> BatchEncoding:
397
+ def get_input_ids(text, max_length=None, pad_token_id=0):
398
+ def pad_sequence(seq, max_len, pad_tok):
399
+ return [pad_tok] * (max_len - len(seq)) + seq
400
+
401
+ if isinstance(text, str):
402
+ tokens = self._tokenize(text)
403
+ if max_length is not None:
404
+ tokens = pad_sequence(tokens, max_length, pad_token_id)
405
+ return tokens
406
+
407
+ elif isinstance(text, list) and len(text) > 0 and isinstance(text[0], str):
408
+ tokenized_texts = [self._tokenize(t) for t in text]
409
+ if max_length is None:
410
+ max_length = max(len(t) for t in tokenized_texts)
411
+ return [pad_sequence(t, max_length, pad_token_id) for t in tokenized_texts]
412
+
413
+ elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], int):
414
+ if max_length is not None and len(text) < max_length:
415
+ return pad_sequence(text, max_length, pad_token_id)
416
+ return text
417
+
418
+ else:
419
+ raise ValueError(
420
+ "Input is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers."
421
+ )
422
+
423
+ if return_offsets_mapping:
424
+ raise NotImplementedError(
425
+ "return_offset_mapping is not available when using Python tokenizers. "
426
+ "To use this feature, change your tokenizer to one deriving from "
427
+ "transformers.PreTrainedTokenizerFast."
428
+ )
429
+
430
+ first_max_length = 0
431
+ second_max_length = 0
432
+ for ids_or_pair_ids in batch_text_or_text_pairs:
433
+ if not isinstance(ids_or_pair_ids, (list, tuple)):
434
+ ids, pair_ids = ids_or_pair_ids, None
435
+ else:
436
+ ids, pair_ids = ids_or_pair_ids
437
+ first_ids = get_input_ids(ids)
438
+ second_ids = get_input_ids(pair_ids) if pair_ids is not None else None
439
+ first_max_length = max(first_max_length, len(first_ids))
440
+ if second_ids is not None:
441
+ second_max_length = max(second_max_length, len(second_ids))
442
+
443
+ self.first_max_length = first_max_length
444
+ input_ids = []
445
+ for ids_or_pair_ids in batch_text_or_text_pairs:
446
+ if not isinstance(ids_or_pair_ids, (list, tuple)):
447
+ ids, pair_ids = ids_or_pair_ids, None
448
+ else:
449
+ ids, pair_ids = ids_or_pair_ids
450
+
451
+ first_ids = get_input_ids(ids, max_length=first_max_length)
452
+ second_ids = get_input_ids(pair_ids, max_length=second_max_length) if pair_ids is not None else None
453
+ input_ids.append((first_ids, second_ids))
454
+
455
+ batch_outputs = self._batch_prepare_for_model(
456
+ input_ids,
457
+ add_special_tokens=add_special_tokens,
458
+ padding_strategy=padding_strategy,
459
+ truncation_strategy=truncation_strategy,
460
+ max_length=max_length,
461
+ stride=stride,
462
+ pad_to_multiple_of=pad_to_multiple_of,
463
+ return_attention_mask=return_attention_mask,
464
+ return_token_type_ids=return_token_type_ids,
465
+ return_overflowing_tokens=return_overflowing_tokens,
466
+ return_special_tokens_mask=return_special_tokens_mask,
467
+ return_length=return_length,
468
+ return_tensors=return_tensors,
469
+ verbose=verbose,
470
+ )
471
+
472
+ return BatchEncoding(batch_outputs)
473
+
474
+ def decode(
475
+ self,
476
+ token_ids: Union[int, List[int]],
477
+ skip_special_tokens: bool = False,
478
+ clean_up_tokenization_spaces: bool = None,
479
+ **kwargs,
480
+ ) -> str:
481
+ """
482
+ Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special
483
+ tokens and clean up tokenization spaces.
484
+
485
+ Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`.
486
+
487
+ Args:
488
+ token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`):
489
+ List of tokenized input ids. Can be obtained using the `__call__` method.
490
+ skip_special_tokens (`bool`, *optional*, defaults to `False`):
491
+ Whether or not to remove special tokens in the decoding.
492
+ clean_up_tokenization_spaces (`bool`, *optional*):
493
+ Whether or not to clean up the tokenization spaces. If `None`, will default to
494
+ `self.clean_up_tokenization_spaces`.
495
+ kwargs (additional keyword arguments, *optional*):
496
+ Will be passed to the underlying model specific decode method.
497
+
498
+ Returns:
499
+ `str`: The decoded sentence.
500
+ """
501
+ # Convert inputs to python lists
502
+ return self._decode(
503
+ token_ids=token_ids,
504
+ skip_special_tokens=skip_special_tokens,
505
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
506
+ **kwargs,
507
+ )
508
+
509
+ def batch_decode(
510
+ self,
511
+ sequences: Union[List[int], List[List[int]]],
512
+ skip_special_tokens: bool = False,
513
+ clean_up_tokenization_spaces: bool = None,
514
+ **kwargs,
515
+ ) -> List[str]:
516
+ """
517
+ Convert a list of lists of token ids into a list of strings by calling decode.
518
+
519
+ Args:
520
+ sequences (`Union[List[int], List[List[int]], np.ndarray, torch.Tensor, tf.Tensor]`):
521
+ List of tokenized input ids. Can be obtained using the `__call__` method.
522
+ skip_special_tokens (`bool`, *optional*, defaults to `False`):
523
+ Whether or not to remove special tokens in the decoding.
524
+ clean_up_tokenization_spaces (`bool`, *optional*):
525
+ Whether or not to clean up the tokenization spaces. If `None`, will default to
526
+ `self.clean_up_tokenization_spaces`.
527
+ kwargs (additional keyword arguments, *optional*):
528
+ Will be passed to the underlying model specific decode method.
529
+
530
+ Returns:
531
+ `List[str]`: The list of decoded sentences.
532
+ """
533
+ return [
534
+ self.decode(
535
+ seq,
536
+ skip_special_tokens=skip_special_tokens,
537
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
538
+ **kwargs,
539
+ )
540
+ for seq in sequences
541
+ ]
542
+
543
+ def _build_conversation_input_ids(self, conversation: "Conversation") -> List[int]:
544
+ input_ids = []
545
+ for is_user, text in conversation.iter_texts():
546
+ input_ids.extend(self.encode(text, add_special_tokens=False) + [self.eos_token_id])
547
+ if len(input_ids) > self.model_max_length:
548
+ input_ids = input_ids[-self.model_max_length :]
549
+ return input_ids
tokenizer_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name_or_path": "rwkv-world",
3
+ "add_prefix_space": false,
4
+ "tokenizer_class": "RWKVWorldTokenizer",
5
+ "use_fast": false,
6
+ "auto_map": {
7
+ "AutoTokenizer": [
8
+ "tokenization_rwkv_world.RWKVWorldTokenizer",
9
+ null
10
+ ]
11
+ }
12
+ }