File size: 17,069 Bytes
1e9d84a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 |
---
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:410745
- loss:ContrastiveLoss
widget:
- source_sentence: وینچ
sentences:
- ترقه شکلاتی ( هفت ترقه ) ناریه پارس درجه 1 بسته 15 عددی ترقه شکلاتی ( هفت ترقه
) ناریه پارس درجه 1 بسته 15 عددی 10عدد ناریه ترقه شکلاتی هفت ترقه بار تازه بدون
رطوبت وخرابی مارک معتبر نورافشانی
- پارچه میکرو کجراه
- Car winch-1500LBS-KARA وینچ خودرو آفرود ۶۸۰ کیلوگرم کارا ۱۵۰۰lbs وینچ خودرویی
(جلو ماشینی) 1500LBS کارا (KARA)
- source_sentence: ' وسپا '
sentences:
- پولوشرت زرد وسپا
- دوچرخه بند سقفی لیفان X70 ایکس 70 آلومینیومی طرح منابو
- دوچرخه ویوا Oxygen سایز 26 دوچرخه 26 ويوا OXYGEN دوچرخه کوهستان ویوا مدل OXYGEN
سایز 26
- source_sentence: دوچرخه المپیا سایز 27 5
sentences:
- دوچرخه شهری المپیا کد 16220 سایز 16 دوچرخه شهری المپیا کد 16220 سایز 16 دوچرخه
المپیا کد 16220 سایز 16 - OLYMPIA
- لامپ اس ام دی خودرو مدل 8B بسته 2 عددی
- قیمت کمپرس سنج موتور
- source_sentence: دچرخه ی
sentences:
- هیدروفیشیال ۷ کاره نیوفیس پلاس متور سنگین ۲۰۲۲
- جامدادی کیوت
- جعبه ی کادو ی رنگی
- source_sentence: هایومکس
sentences:
- انگشتر حدید صینی کد2439
- ژل هایومکس ولومایزر 2 سی سی
- دزدگیر پاناتک مدل P-CA501 دزدگیر پاناتک P-CA501-2 دزدگیر پاناتک مدل P-CA501-2
model-index:
- name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy
value: 0.8531738206358597
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.763870358467102
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9032999224561303
name: Cosine F1
- type: cosine_f1_threshold
value: 0.7447167634963989
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.8649689236015621
name: Cosine Precision
- type: cosine_recall
value: 0.9451857194374323
name: Cosine Recall
- type: cosine_ap
value: 0.9354580013152192
name: Cosine Ap
- type: dot_accuracy
value: 0.8179627073336401
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 17.24372100830078
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.8831898479427548
name: Dot F1
- type: dot_f1_threshold
value: 16.905807495117188
name: Dot F1 Threshold
- type: dot_precision
value: 0.8255042324171805
name: Dot Precision
- type: dot_recall
value: 0.9495432143286453
name: Dot Recall
- type: dot_ap
value: 0.9192801272426158
name: Dot Ap
- type: manhattan_accuracy
value: 0.8484629374000306
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 56.168235778808594
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.9006901291486498
name: Manhattan F1
- type: manhattan_f1_threshold
value: 57.448089599609375
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.8601706503309084
name: Manhattan Precision
- type: manhattan_recall
value: 0.9452157711263373
name: Manhattan Recall
- type: manhattan_ap
value: 0.9331690796886208
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.8485944039089375
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 3.5569825172424316
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.9009756516265629
name: Euclidean F1
- type: euclidean_f1_threshold
value: 3.694398880004883
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.8597717468465025
name: Euclidean Precision
- type: euclidean_recall
value: 0.9463276836158192
name: Euclidean Recall
- type: euclidean_ap
value: 0.9332275611001725
name: Euclidean Ap
- type: max_accuracy
value: 0.8531738206358597
name: Max Accuracy
- type: max_accuracy_threshold
value: 56.168235778808594
name: Max Accuracy Threshold
- type: max_f1
value: 0.9032999224561303
name: Max F1
- type: max_f1_threshold
value: 57.448089599609375
name: Max F1 Threshold
- type: max_precision
value: 0.8649689236015621
name: Max Precision
- type: max_recall
value: 0.9495432143286453
name: Max Recall
- type: max_ap
value: 0.9354580013152192
name: Max Ap
---
# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision bf3bf13ab40c3157080a7ab344c831b9ad18b5eb -->
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("DashReza7/sentence-transformers_paraphrase-multilingual-MiniLM-L12-v2_FINETUNED_on_torob_data_v5")
# Run inference
sentences = [
'هایومکس',
'ژل هایومکس ولومایزر 2 سی سی',
'دزدگیر پاناتک مدل P-CA501 دزدگیر پاناتک P-CA501-2 دزدگیر پاناتک مدل P-CA501-2',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Binary Classification
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:-----------------------------|:-----------|
| cosine_accuracy | 0.8532 |
| cosine_accuracy_threshold | 0.7639 |
| cosine_f1 | 0.9033 |
| cosine_f1_threshold | 0.7447 |
| cosine_precision | 0.865 |
| cosine_recall | 0.9452 |
| cosine_ap | 0.9355 |
| dot_accuracy | 0.818 |
| dot_accuracy_threshold | 17.2437 |
| dot_f1 | 0.8832 |
| dot_f1_threshold | 16.9058 |
| dot_precision | 0.8255 |
| dot_recall | 0.9495 |
| dot_ap | 0.9193 |
| manhattan_accuracy | 0.8485 |
| manhattan_accuracy_threshold | 56.1682 |
| manhattan_f1 | 0.9007 |
| manhattan_f1_threshold | 57.4481 |
| manhattan_precision | 0.8602 |
| manhattan_recall | 0.9452 |
| manhattan_ap | 0.9332 |
| euclidean_accuracy | 0.8486 |
| euclidean_accuracy_threshold | 3.557 |
| euclidean_f1 | 0.901 |
| euclidean_f1_threshold | 3.6944 |
| euclidean_precision | 0.8598 |
| euclidean_recall | 0.9463 |
| euclidean_ap | 0.9332 |
| max_accuracy | 0.8532 |
| max_accuracy_threshold | 56.1682 |
| max_f1 | 0.9033 |
| max_f1_threshold | 57.4481 |
| max_precision | 0.865 |
| max_recall | 0.9495 |
| **max_ap** | **0.9355** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 256
- `per_device_eval_batch_size`: 256
- `learning_rate`: 2e-05
- `num_train_epochs`: 2
- `warmup_ratio`: 0.1
- `fp16`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 256
- `per_device_eval_batch_size`: 256
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 2
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | max_ap |
|:------:|:----:|:-------------:|:------:|
| None | 0 | - | 0.8131 |
| 0.3115 | 500 | 0.0256 | - |
| 0.6231 | 1000 | 0.0179 | - |
| 0.9346 | 1500 | 0.0165 | - |
| 1.2461 | 2000 | 0.0152 | - |
| 1.5576 | 2500 | 0.0148 | - |
| 1.8692 | 3000 | 0.0144 | - |
| 2.0 | 3210 | - | 0.9355 |
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.4.0+cu121
- Accelerate: 0.32.1
- Datasets: 2.21.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### ContrastiveLoss
```bibtex
@inproceedings{hadsell2006dimensionality,
author={Hadsell, R. and Chopra, S. and LeCun, Y.},
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
title={Dimensionality Reduction by Learning an Invariant Mapping},
year={2006},
volume={2},
number={},
pages={1735-1742},
doi={10.1109/CVPR.2006.100}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |