---
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:410745
- loss:ContrastiveLoss
widget:
- source_sentence: وینچ
sentences:
- ترقه شکلاتی ( هفت ترقه ) ناریه پارس درجه 1 بسته 15 عددی ترقه شکلاتی ( هفت ترقه
) ناریه پارس درجه 1 بسته 15 عددی 10عدد ناریه ترقه شکلاتی هفت ترقه بار تازه بدون
رطوبت وخرابی مارک معتبر نورافشانی
- پارچه میکرو کجراه
- Car winch-1500LBS-KARA وینچ خودرو آفرود ۶۸۰ کیلوگرم کارا ۱۵۰۰lbs وینچ خودرویی
(جلو ماشینی) 1500LBS کارا (KARA)
- source_sentence: ' وسپا '
sentences:
- پولوشرت زرد وسپا
- دوچرخه بند سقفی لیفان X70 ایکس 70 آلومینیومی طرح منابو
- دوچرخه ویوا Oxygen سایز 26 دوچرخه 26 ويوا OXYGEN دوچرخه کوهستان ویوا مدل OXYGEN
سایز 26
- source_sentence: دوچرخه المپیا سایز 27 5
sentences:
- دوچرخه شهری المپیا کد 16220 سایز 16 دوچرخه شهری المپیا کد 16220 سایز 16 دوچرخه
المپیا کد 16220 سایز 16 - OLYMPIA
- لامپ اس ام دی خودرو مدل 8B بسته 2 عددی
- قیمت کمپرس سنج موتور
- source_sentence: دچرخه ی
sentences:
- هیدروفیشیال ۷ کاره نیوفیس پلاس متور سنگین ۲۰۲۲
- جامدادی کیوت
- جعبه ی کادو ی رنگی
- source_sentence: هایومکس
sentences:
- انگشتر حدید صینی کد2439
- ژل هایومکس ولومایزر 2 سی سی
- دزدگیر پاناتک مدل P-CA501 دزدگیر پاناتک P-CA501-2 دزدگیر پاناتک مدل P-CA501-2
model-index:
- name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy
value: 0.8531738206358597
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.763870358467102
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9032999224561303
name: Cosine F1
- type: cosine_f1_threshold
value: 0.7447167634963989
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.8649689236015621
name: Cosine Precision
- type: cosine_recall
value: 0.9451857194374323
name: Cosine Recall
- type: cosine_ap
value: 0.9354580013152192
name: Cosine Ap
- type: dot_accuracy
value: 0.8179627073336401
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 17.24372100830078
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.8831898479427548
name: Dot F1
- type: dot_f1_threshold
value: 16.905807495117188
name: Dot F1 Threshold
- type: dot_precision
value: 0.8255042324171805
name: Dot Precision
- type: dot_recall
value: 0.9495432143286453
name: Dot Recall
- type: dot_ap
value: 0.9192801272426158
name: Dot Ap
- type: manhattan_accuracy
value: 0.8484629374000306
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 56.168235778808594
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.9006901291486498
name: Manhattan F1
- type: manhattan_f1_threshold
value: 57.448089599609375
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.8601706503309084
name: Manhattan Precision
- type: manhattan_recall
value: 0.9452157711263373
name: Manhattan Recall
- type: manhattan_ap
value: 0.9331690796886208
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.8485944039089375
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 3.5569825172424316
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.9009756516265629
name: Euclidean F1
- type: euclidean_f1_threshold
value: 3.694398880004883
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.8597717468465025
name: Euclidean Precision
- type: euclidean_recall
value: 0.9463276836158192
name: Euclidean Recall
- type: euclidean_ap
value: 0.9332275611001725
name: Euclidean Ap
- type: max_accuracy
value: 0.8531738206358597
name: Max Accuracy
- type: max_accuracy_threshold
value: 56.168235778808594
name: Max Accuracy Threshold
- type: max_f1
value: 0.9032999224561303
name: Max F1
- type: max_f1_threshold
value: 57.448089599609375
name: Max F1 Threshold
- type: max_precision
value: 0.8649689236015621
name: Max Precision
- type: max_recall
value: 0.9495432143286453
name: Max Recall
- type: max_ap
value: 0.9354580013152192
name: Max Ap
---
# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2)
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("DashReza7/sentence-transformers_paraphrase-multilingual-MiniLM-L12-v2_FINETUNED_on_torob_data_v5")
# Run inference
sentences = [
'هایومکس',
'ژل هایومکس ولومایزر 2 سی سی',
'دزدگیر پاناتک مدل P-CA501 دزدگیر پاناتک P-CA501-2 دزدگیر پاناتک مدل P-CA501-2',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Binary Classification
* Evaluated with [BinaryClassificationEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:-----------------------------|:-----------|
| cosine_accuracy | 0.8532 |
| cosine_accuracy_threshold | 0.7639 |
| cosine_f1 | 0.9033 |
| cosine_f1_threshold | 0.7447 |
| cosine_precision | 0.865 |
| cosine_recall | 0.9452 |
| cosine_ap | 0.9355 |
| dot_accuracy | 0.818 |
| dot_accuracy_threshold | 17.2437 |
| dot_f1 | 0.8832 |
| dot_f1_threshold | 16.9058 |
| dot_precision | 0.8255 |
| dot_recall | 0.9495 |
| dot_ap | 0.9193 |
| manhattan_accuracy | 0.8485 |
| manhattan_accuracy_threshold | 56.1682 |
| manhattan_f1 | 0.9007 |
| manhattan_f1_threshold | 57.4481 |
| manhattan_precision | 0.8602 |
| manhattan_recall | 0.9452 |
| manhattan_ap | 0.9332 |
| euclidean_accuracy | 0.8486 |
| euclidean_accuracy_threshold | 3.557 |
| euclidean_f1 | 0.901 |
| euclidean_f1_threshold | 3.6944 |
| euclidean_precision | 0.8598 |
| euclidean_recall | 0.9463 |
| euclidean_ap | 0.9332 |
| max_accuracy | 0.8532 |
| max_accuracy_threshold | 56.1682 |
| max_f1 | 0.9033 |
| max_f1_threshold | 57.4481 |
| max_precision | 0.865 |
| max_recall | 0.9495 |
| **max_ap** | **0.9355** |
## Training Details
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 256
- `per_device_eval_batch_size`: 256
- `learning_rate`: 2e-05
- `num_train_epochs`: 2
- `warmup_ratio`: 0.1
- `fp16`: True
#### All Hyperparameters
Click to expand
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 256
- `per_device_eval_batch_size`: 256
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 2
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
### Training Logs
| Epoch | Step | Training Loss | max_ap |
|:------:|:----:|:-------------:|:------:|
| None | 0 | - | 0.8131 |
| 0.3115 | 500 | 0.0256 | - |
| 0.6231 | 1000 | 0.0179 | - |
| 0.9346 | 1500 | 0.0165 | - |
| 1.2461 | 2000 | 0.0152 | - |
| 1.5576 | 2500 | 0.0148 | - |
| 1.8692 | 3000 | 0.0144 | - |
| 2.0 | 3210 | - | 0.9355 |
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.4.0+cu121
- Accelerate: 0.32.1
- Datasets: 2.21.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### ContrastiveLoss
```bibtex
@inproceedings{hadsell2006dimensionality,
author={Hadsell, R. and Chopra, S. and LeCun, Y.},
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
title={Dimensionality Reduction by Learning an Invariant Mapping},
year={2006},
volume={2},
number={},
pages={1735-1742},
doi={10.1109/CVPR.2006.100}
}
```