--- base_model: - Qwen/Qwen2.5-32B-Instruct - karakuri-ai/karakuri-lm-32b-thinking-2501-exp - NovaSky-AI/Sky-T1-32B-Flash - FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Coder-32B-Preview - cyberagent/DeepSeek-R1-Distill-Qwen-32B-Japanese - TeamDelta/ABEJA-Qwen2.5-32B-base-jp-v0.1 library_name: transformers tags: - mergekit - merge license: apache-2.0 language: - en - ja pipeline_tag: text-generation --- ## 概要 このモデルはQwQの長文生成能力とR1の性能を合わせたモデルを作ることを目標にMergekitとFTを用いて製作しました。 ## How to use ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "DataPilot/SKYDRIVE-32B-v0.1" tokenizer_name = "" if tokenizer_name == "": tokenizer_name = model_name model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(tokenizer_name) prompt = "メタデータを解析し、自己進化をするAIであるnurture intelligenceが実現した未来の日常生活の姿を教えてください。" messages = [ {"role": "system", "content": "あなたは優秀な日本語アシスタントであり長考モデルです。問題解決をするための思考をした上で回答を行ってください。"}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=4096 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] print(response) ``` ## 謝辞 このモデルの作成者皆様と、計算資源を貸していただいたVOLTMINDに感謝します。 問題解決に協力してくださったhayashiさんにも感謝申し上げます。 ## Mergekit config ```yaml merge_method: slerp base_model: karakuri-ai/karakuri-lm-32b-thinking-2501-exp models: - model: karakuri-ai/karakuri-lm-32b-thinking-2501-exp - model: NovaSky-AI/Sky-T1-32B-Flash parameters: t: 0.4 dtype: bfloat16 name: SKYCAVE_element_Sky_jp --- merge_method: breadcrumbs_ties base_model: Qwen/Qwen2.5-32B tokenizer_source: karakuri-ai/karakuri-lm-32b-thinking-2501-exp name: SKYDRIVE_element_jp_01 models: - model: karakuri-ai/karakuri-lm-32b-thinking-2501-exp parameters: weight: 1.0 - model: FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Coder-32B-Preview parameters: weight: 0.75 dtype: bfloat16 --- merge_method: task_arithmetic base_model: Qwen/Qwen2.5-32B tokenizer_source: karakuri-ai/karakuri-lm-32b-thinking-2501-exp name: SKYDRIVE_element_jp_02 models: - model: karakuri-ai/karakuri-lm-32b-thinking-2501-exp parameters: weight: 1.0 - model: cyberagent/DeepSeek-R1-Distill-Qwen-32B-Japanese parameters: weight: 0.9 dtype: bfloat16 --- merge_method: slerp base_model: karakuri-ai/karakuri-lm-32b-thinking-2501-exp models: - model: karakuri-ai/karakuri-lm-32b-thinking-2501-exp - model: TeamDelta/ABEJA-Qwen2.5-32B-base-jp-v0.1 parameters: t: 0.5 dtype: bfloat16 name: SKYDRIVE_element_jp_03 --- merge_method: model_stock base_model: Qwen/Qwen2.5-32B-Instruct models: - model: karakuri-ai/karakuri-lm-32b-thinking-2501-exp - model: SKYCAVE_element_Sky_jp - model: SKYDRIVE_element_jp_01 - model: SKYDRIVE_element_jp_02 - model: SKYDRIVE_element_jp_03 dtype: bfloat16 pad_to_multiple_of: 512 tokenizer_source: base name: SKYDRIVE-32B-v0.1 ```