File size: 2,066 Bytes
e63b541 8967b54 e63b541 8967b54 e63b541 8967b54 e63b541 8967b54 e63b541 8967b54 e63b541 8967b54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
base_model: TheBloke/Mistral-7B-Instruct-v0.2-GPTQ
library_name: peft
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: aiHumangpt-ft
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# aiHumangpt-ft
This model is a fine-tuned version of [TheBloke/Mistral-7B-Instruct-v0.2-GPTQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GPTQ) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4106
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 12
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.5789 | 1.0 | 9 | 2.5621 |
| 2.167 | 2.0 | 18 | 1.7742 |
| 1.6487 | 3.0 | 27 | 1.5763 |
| 1.5012 | 4.0 | 36 | 1.5012 |
| 1.4015 | 5.0 | 45 | 1.4344 |
| 1.3308 | 6.0 | 54 | 1.4161 |
| 1.2814 | 7.0 | 63 | 1.4146 |
| 1.2415 | 8.0 | 72 | 1.3996 |
| 1.2038 | 9.0 | 81 | 1.4044 |
| 1.1733 | 10.0 | 90 | 1.4044 |
| 1.1414 | 11.0 | 99 | 1.4122 |
| 1.1275 | 12.0 | 108 | 1.4106 |
### Framework versions
- PEFT 0.12.0
- Transformers 4.42.4
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1 |