--- tags: - merge - mergekit - lazymergekit - KoboldAI/LLaMA2-13B-Tiefighter - DavidAU/D_AU-Tiefighter-Giraffe-13B-32k-slerp base_model: - KoboldAI/LLaMA2-13B-Tiefighter - DavidAU/D_AU-Tiefighter-Giraffe-13B-32k-slerp --- Version 2: Attempt to use linear "retraining" to fix issues with orginal model (D_AU-Tiefighter-Giraffe-13B-32k-slerp) merge from step 1. Seems to be successful. Model is working correctly and GGUFs are also working correctly with context at 32768. More testing required to see if context upgrade holds. Imatrix Plus GGUFs upload to follow shortly. # D_AU-Tiefighter-Plus-Giraffe-13B-32k-slerp D_AU-Tiefighter-Plus-Giraffe-13B-32k-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [KoboldAI/LLaMA2-13B-Tiefighter](https://huggingface.co/KoboldAI/LLaMA2-13B-Tiefighter) * [DavidAU/D_AU-Tiefighter-Giraffe-13B-32k-slerp](https://huggingface.co/DavidAU/D_AU-Tiefighter-Giraffe-13B-32k-slerp) ## 🧩 Configuration ```yaml models: - model: KoboldAI/LLaMA2-13B-Tiefighter parameters: weight: 0.8 - model: DavidAU/D_AU-Tiefighter-Giraffe-13B-32k-slerp parameters: weight: 0.2 merge_method: linear dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "DavidAU/D_AU-Tiefighter-Plus-Giraffe-13B-32k-slerp" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```