File size: 5,657 Bytes
084b59b
 
 
 
 
 
 
 
 
 
 
acfa3a7
 
084b59b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acfa3a7
 
084b59b
 
 
 
 
 
 
 
 
 
 
 
 
 
acfa3a7
 
084b59b
 
 
 
 
 
 
 
 
 
 
 
 
 
acfa3a7
 
084b59b
 
 
 
 
 
 
 
 
 
 
 
 
 
acfa3a7
 
084b59b
 
 
 
 
 
 
 
 
 
 
 
 
 
acfa3a7
 
084b59b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acfa3a7
 
084b59b
 
 
c013d0a
084b59b
81c89c1
 
c013d0a
084b59b
c013d0a
 
 
 
 
 
 
 
 
084b59b
c013d0a
084b59b
c013d0a
 
084b59b
c013d0a
084b59b
 
 
 
 
 
 
 
c013d0a
084b59b
c013d0a
084b59b
c013d0a
 
084b59b
c013d0a
 
 
084b59b
c013d0a
 
084b59b
c013d0a
 
 
084b59b
c013d0a
 
084b59b
c013d0a
 
 
 
 
084b59b
c013d0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
084b59b
 
 
c013d0a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
---
language:
- en
license: other
library_name: transformers
tags:
- chat
- qwen
- qwen2.5
- finetune
- english
base_model:
- MaziyarPanahi/calme-3.2-instruct-78b
model_name: calme-3.2-instruct-78b
license_name: qwen
license_link: https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE
pipeline_tag: text-generation
inference: false
model_creator: MaziyarPanahi
quantized_by: MaziyarPanahi
model-index:
- name: calme-3.2-instruct-78b
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 80.63
      name: strict accuracy
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-3.2-instruct-78b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 62.61
      name: normalized accuracy
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-3.2-instruct-78b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 39.95
      name: exact match
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-3.2-instruct-78b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 20.36
      name: acc_norm
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-3.2-instruct-78b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 38.53
      name: acc_norm
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-3.2-instruct-78b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 70.03
      name: accuracy
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-3.2-instruct-78b
      name: Open LLM Leaderboard
---

# EXL2 4.5bpw Quantization of calme-3.2-instruct-78b

<img src="./calme_3.png" alt="Calme-3 Models" width="200" style="margin-left:'auto' margin-right:'auto' display:'block'"/>

This repository hosts the **4.5 bits per weight (bpw)** quantization of the [calme-3.2-instruct-78b](https://huggingface.co/MaziyarPanahi/calme-3.2-instruct-78b) model, leveraging the **ExLlamaV2** format for efficient inference with high-context capabilities. This model is a Qwen 2.5 finetune. 

## Quantization Details
- **Format:** ExLlamaV2 4.5bpw
- **Version:** ExLlamaV2 0.2.6
- **Model Size:** 78 billion parameters
- **VRAM Usage:** Approx. **44GB** (32,000 context)
- **Calibration:**
  - Rows: 115
  - Length: 2048
  - Dataset: (default)

The quantization process reduces memory usage and inference latency while maintaining high performance for generative text tasks.

## Prompt Template
This model uses the ChatML prompt template for interaction:

```
<|im_start|>system
{System}
<|im_end|>
<|im_start|>user
{User}
<|im_end|>
<|im_start|>assistant
{Assistant}
```

## Model Usage

### Example: Inference with ExLlamaV2
To use this quantized model, ensure you have the **ExLlamaV2** library installed:

```bash
pip install exllamav2
```

```python
from exllamav2 import ExLlamaModel, ExLlamaTokenizer, ExLlamaPipeline

# Load model and tokenizer
model = ExLlamaModel.from_pretrained("DavidCatalano/calme-3.2-instruct-78b-exl2-4.5bpw")
tokenizer = ExLlamaTokenizer.from_pretrained("DavidCatalano/calme-3.2-instruct-78b-exl2-4.5bpw")

# Create pipeline
pipeline = ExLlamaPipeline(model, tokenizer)

# Generate text
messages = [{"role": "user", "content": "What is EXL2 quantization?"}]
response = pipeline(messages)
print(response)
```

## Features
- EXL2 format requires Nvidia hardware but runs faster and with less RAM than GGUF.
- Supports **44GB VRAM** with **32,000 context window**.
- **40GB** minimum **1024 context window**
- Highly optimized for inference, making it ideal for resource-constrained environments.
- Compatible with ChatML-based prompting systems.

## Acknowledgments
- **Original Model Creator:** [MaziyarPanahi](https://huggingface.co/MaziyarPanahi)
- **Quantization by:** [DavidCatalano](https://huggingface.co/DavidCatalano)
- **Quantization Tool:** ExLlamaV2 0.2.6

## Download Instructions
To download the model files:

```bash
huggingface-cli install huggingface_hub
huggingface-cli login
huggingface-cli download DavidCatalano/calme-3.2-instruct-78b-exl2-4.5bpw --include "*" --local-dir ./local-folder
```


---