DaydreamerF commited on
Commit
ac6a977
·
verified ·
1 Parent(s): f4c22ef

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +53 -10
README.md CHANGED
@@ -1,14 +1,57 @@
1
- ---
2
- language:
3
- - zh
4
- - bo
5
- - en
6
- base_model:
7
- - meta-llama/Meta-Llama-3-8B-Instruct
8
- pipeline_tag: text-generation
9
- ---
10
  # TibetaMind: Advanced Tibetan Language Model
11
  **TibetaMind** is an advanced language model based on the Llama 3-8B-Instruct architecture, further fine-tuned using extensive Tibetan language corpora. Through this specialized fine-tuning, **TibetaMind** has significantly enhanced its ability to comprehend, process, and generate Tibetan language content, while also providing seamless cross-language understanding between Tibetan and Chinese. This allows for accurate translation and communication across these languages. **TibetaMind** can be applied to a variety of tasks, including Tibetan text generation, summarization, and translation between Tibetan and Chinese, playing a pivotal role in preserving and advancing Tibetan linguistics in the digital age.
12
 
 
13
 
14
- ##
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - zh
4
+ - bo
5
+ - en
6
+ base_model:
7
+ - meta-llama/Meta-Llama-3-8B-Instruct
8
+ pipeline_tag: text-generation
9
+ ---
10
  # TibetaMind: Advanced Tibetan Language Model
11
  **TibetaMind** is an advanced language model based on the Llama 3-8B-Instruct architecture, further fine-tuned using extensive Tibetan language corpora. Through this specialized fine-tuning, **TibetaMind** has significantly enhanced its ability to comprehend, process, and generate Tibetan language content, while also providing seamless cross-language understanding between Tibetan and Chinese. This allows for accurate translation and communication across these languages. **TibetaMind** can be applied to a variety of tasks, including Tibetan text generation, summarization, and translation between Tibetan and Chinese, playing a pivotal role in preserving and advancing Tibetan linguistics in the digital age.
12
 
13
+ # How to use
14
 
15
+ ## Use with transformers
16
+
17
+ ### Transformers AutoModelForCausalLM
18
+
19
+ ```python
20
+ from transformers import AutoTokenizer, AutoModelForCausalLM
21
+ import torch
22
+
23
+ model_id = "DaydreamerF/TibetaMind"
24
+
25
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
26
+ model = AutoModelForCausalLM.from_pretrained(
27
+ model_id,
28
+ torch_dtype=torch.float16,
29
+ device_map="auto",
30
+ )
31
+
32
+ messages = [
33
+ {"role": "user", "content": "如何用藏语表达下面汉语的意思:汉语句子:大狗在楼里不好养。"},
34
+ ]
35
+
36
+ input_ids = tokenizer.apply_chat_template(
37
+ messages,
38
+ add_generation_prompt=True,
39
+ return_tensors="pt"
40
+ ).to(model.device)
41
+
42
+ terminators = [
43
+ tokenizer.eos_token_id,
44
+ tokenizer.convert_tokens_to_ids("<|eot_id|>")
45
+ ]
46
+
47
+ outputs = model.generate(
48
+ input_ids,
49
+ max_new_tokens=256,
50
+ eos_token_id=terminators,
51
+ do_sample=True,
52
+ temperature=0.6,
53
+ top_p=0.9,
54
+ )
55
+ response = outputs[0][input_ids.shape[-1]:]
56
+ print(tokenizer.decode(response, skip_special_tokens=True))
57
+ ```