--- language: - zh - bo - en base_model: - meta-llama/Meta-Llama-3-8B-Instruct pipeline_tag: text-generation tags: - pytorch --- # TibetaMind: Advanced Tibetan Language Model **TibetaMind** is an advanced language model based on the Llama 3-8B-Instruct architecture, further fine-tuned using extensive Tibetan language corpora. Through this specialized fine-tuning, **TibetaMind** has significantly enhanced its ability to comprehend, process, and generate Tibetan language content, while also providing seamless cross-language understanding between Tibetan and Chinese. This allows for accurate translation and communication across these languages. **TibetaMind** can be applied to a variety of tasks, including Tibetan text generation, summarization, and translation between Tibetan and Chinese, playing a pivotal role in preserving and advancing Tibetan linguistics in the digital age. # How to use ## Use with transformers ### Transformers AutoModelForCausalLM ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch model_id = "DaydreamerF/TibetaMind" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.float16, device_map="auto", ) messages = [ {"role": "user", "content": "如何用藏语表达下面汉语的意思:汉语句子:大狗在楼里不好养。"}, ] input_ids = tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_tensors="pt" ).to(model.device) terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>") ] outputs = model.generate( input_ids, max_new_tokens=256, eos_token_id=terminators, do_sample=True, temperature=0.6, top_p=0.9, ) response = outputs[0][input_ids.shape[-1]:] print(tokenizer.decode(response, skip_special_tokens=True)) ```