--- license: [llama2, other] datasets: - cerebras/SlimPajama-627B - Open-Orca/OpenOrca language: - en tags: - Deci AI - DeciLM - Instruction model-index: - name: DeciLM 6B results: - task: type: text-generation dataset: type: ai2/arc name: ai2_arc metrics: - name: ARC Challenge type: ARC Challenge value: 43.43 verified: false - task: type: text-generation dataset: type: ai2/arc name: ai2_arc metrics: - name: ARC Easy type: ARC Easy value: 70.58 verified: false - task: type: text-generation dataset: type: boolq name: boolq metrics: - name: BoolQ type: BoolQ value: 77.34 verified: false - task: type: text-generation dataset: type: hellaswag name: hellaswag metrics: - name: HellaSwag type: HellaSwag value: 74.57 verified: false - task: type: text-generation dataset: type: LAMBDA name: OpenAI LAMBDA metrics: - name: LAMBDA type: LAMBDA value: 70.1 verified: false - task: type: text-generation dataset: type: OpenBookQA name: openbookqa metrics: - name: OpenBookQA type: OpenBookQA value: 33 verified: false - task: type: text-generation dataset: type: PIQA name: piqa metrics: - name: PIQA type: PIQA value: 77.52 verified: false - task: type: text-generation dataset: type: truthful_qa name: truthful_qa metrics: - name: TruthfulQA type: TruthfulQA value: 43.89 verified: false - task: type: text-generation dataset: type: winogrande name: winogrande metrics: - name: Winogrande type: Winogrande value: 67.64 verified: false --- # DeciLM 6B-Instruct DeciLM 6B-Instruct is a model for short-form instruction following. It is built by LoRA fine-tuning [DeciLM 6B](https://huggingface.co/Deci/DeciLM-6b) on a subset of the [OpenOrca dataset](https://huggingface.co/datasets/Open-Orca/OpenOrca). - **Developed by:** Deci - **Model type:** DeciLM is an auto-regressive language model using an optimized transformer decoder architecture that includes variable Grouped-Query Attention. - **Language(s) (NLP):** English - **License:** [Llama 2 Community License Agreement](https://huggingface.co/Deci/DeciLM-6b-instruct/blob/main/LICENSE.md) with an extention of Deci regarding hosting service providers. ### Model Sources - **Paper:** [DeciLM 6B Technical Blog](https://deci.ai/blog/decilm-15-times-faster-than-llama2-nas-generated-llm-with-variable-gqa/?utm_campaign=repos&utm_source=hugging-face&utm_medium=model-card&utm_content=decilm-6b-instruct) - **Demo:** [DeciLM 6B-Instruct Demo](https://huggingface.co/spaces/Deci/DeciLM-6b-instruct) - **Notebook:** [DeciLM 6B-Instruct Notebook](https://bit.ly/decilm-instruct-nb) ## Uses The model is intended for commercial and research use in English and can be fine-tuned for use in other languages. ## How to Get Started with the Model Use the code below to get started with the model. ```bibtex # pip install -q transformers import torch from transformers import AutoModelForCausalLM, AutoTokenizer checkpoint = "Deci/DeciLM-6b-instruct" device = "cuda" # for GPU usage or "cpu" for CPU usage tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForCausalLM.from_pretrained(checkpoint, torch_dtype=torch.bfloat16, trust_remote_code=True).to(device) inputs = tokenizer.encode("How do I make french toast? Think through it step by step", return_tensors="pt").to(device) outputs = model.generate(inputs, max_new_tokens=100, do_sample=True, top_p=0.95) print(tokenizer.decode(outputs[0])) ``` ## Training Details DeciLM 6B underwent training utilizing the SlimPijamas dataset, leveraging advanced proprietary methodologies allowing for fast training. DeciLM 6B was further finetuned on a subset of the OpenOrca dataset, giving rise to DeciLM-6B-Instruct. ## Evaluation Below are DeciLM's 6B-instruct evaluation results. | Average | ARC Challenge* | ARC Easy* | BoolQ | HellaSwag* | LAMBDA OpenAI | OpenBookQA | PIQA | TruthfulQA | Winogrande | |:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------| | 62.01 | 44.43 | 70.58 | 77.34 | 74.57 | 70.1 | 33 | 77.52 |43.89 | 67.64 | Accuracy-norm score* ## Runtime Benchmarks |Inference Tool/Hardware | A10 (tokens/sec) | |:----------|:----------| | PyTorch | 652.49 | | Infery LLM | 2,029.6 | - Throughput (tokens/sec) - Measured with optimal batch - PyTorch BS 64, Infery LLM BS 128 - In order to replicate the results of the PyTorch benchmark, use this [code example](https://huggingface.co/Deci/DeciLM-6b-instruct/blob/main/hf_benchmark_example.py) ## Disclaimer DeciLM 6B-Instruct has not been aligned for safety or trained using RLHF. ## How to Cite Please cite this model using this format. ```bibtex @misc{DeciFoundationModels, title = {DeciLM 6B Instruct}, author = {DeciAI Research Team}, year = {2023} url={[https://huggingface.co/Deci/DeciLM-6b-instruct](https://huggingface.co/Deci/DeciLM-6b-instruct)}, } ```